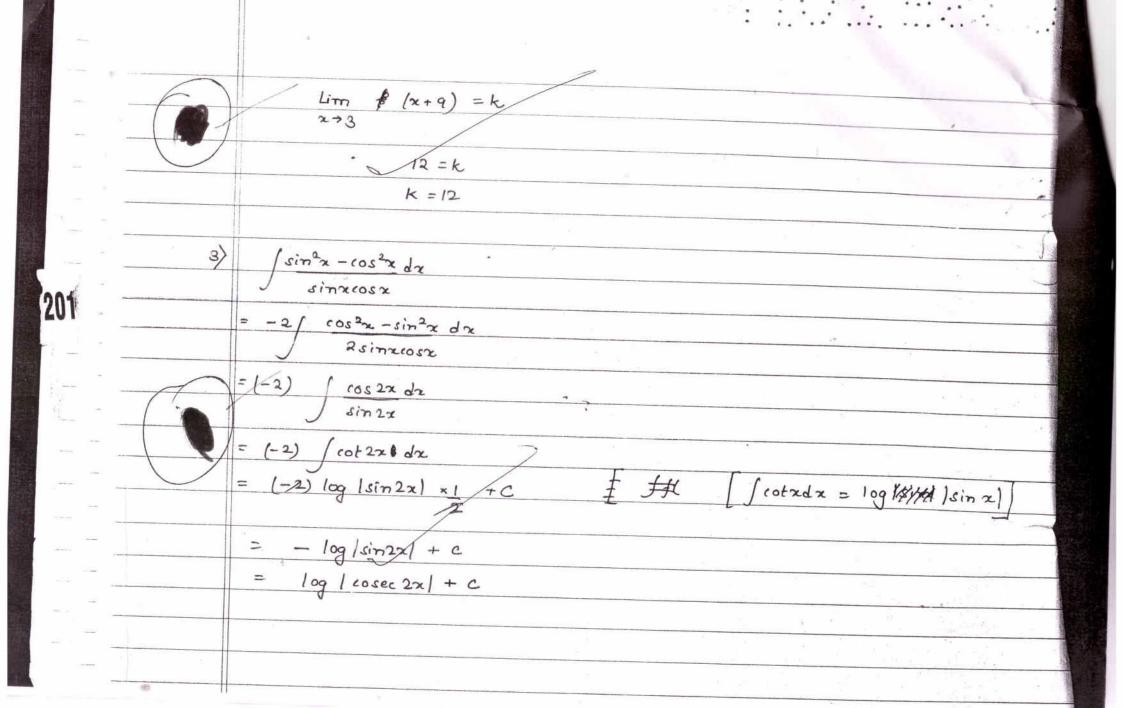
केन्द्रीय माध्यमिक शिक्षा बोर्ड, दिल्ली सीनियर स्कूल सर्टिफिकेट परीक्षा (कक्षा बारहवी परीक्षार्थी प्रवेश-पत्र के अनुसार भरें

वेषय Subject: MATHEMATI		
विषय कोड Subject Code : 041	D	
परीक्षा का दिन एवं तिथि Day & Date of the Examination :	MONDAY , 20	0.03.2017
उत्तर देने का माध्यम Medium of answering the paper :		
प्रश्न पत्र के ऊपर लिखें Co	de Number	Set Number
च्लेच को स्पाप	65/1	• 2 3 4
ट्यतिरिक्त उत्तर-पुस्तिका (ओं) की स No . of supplementary answer -b	iख्या oook(s) used	
विकलांग व्यक्ति : Person with Disabilities : किसी शारीरिक अक्षमता से प्रभावित If physically challenged, tick the	हाँ / नहीं Yes / No हो तो संबंधित वर्ग में category	√ का निशान लगाएँ।
B D D B = दृष्टिहीन, D = मूक व बधिर, H = श C = डिस्लेक्सिक, A = ऑटिस्टिक B = Visually Impaired, D = Hearing S = Spastic, C = Dyslexic, A = Autis	Impaired, H = Physica	
ह = Spastic, C = Dysiexic, A - Address क्या लेखन — लिपिक उपलब्ध कर Whether writer provided :	वाया गया : हाँ / नहीं Yes / No	No
यदि दृष्टिहीन हैं तो उपयोग में लाए र िपटवेयर का नाम : If Visually challenged, name of sof	1 -	-
* क खाने में एक अक्षर लिखें। नाम के प्रत्येक नाम 24 अक्षरों से अधिक है, तो केवल नाम के Each letter be written in one box and name. In case Candidate's Name exce	माग के बीच एक खाना रि प्रथम 24 असर ही लिखें। I one box be left blank	between each part of the
कार्यालय उपयोग के लिए	(390753

041/00309


$$f(x) = \int (x+3)^2 - 36 ; x \neq 0$$

$$x - 3$$

$$k ; x = 3$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = 4 f(3)$$

$$\lim_{x\to 3} \frac{(x-8)(x+9)}{(x-8)} = k$$

P₁ =>
$$2x - y + 2z = 5$$

P₂ => $5x - 2.5y + 5z = 20$

=> $2x - y + 2z = 20 = 26x2 = 8$

=> $3.5 = 8$

distance = $2x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$
 $3x - 4x = 20 = 26x2 = 8$

 $|A| = |A^T|$

SECTION B !

$$2|A| = 0$$

$$|A| = 0$$

6)
$$f(x) = x^3 - 3x$$

 $f'(x) = 3x^2 - 3$

: f(x) is a polynomial it is continuous in the interval [-53,0] : f'(x) is a polynomial it is differentiable in the interval [(0-53,0)

$$f(0) = 0-3(0) = 0$$

$$f(-\sqrt{3}) = (-\sqrt{3})^3 - 3(-\sqrt{3}) = -3\sqrt{3} + 3\sqrt{3} = 0$$

$$f(0) = f(-\sqrt{3})$$

Hence there exists $c \in (-53,0)$ such mat f(c) = 0.

$$f'(c) = 3c^2 - 3 = 0$$

$$3c^{2}-3=0$$

+ 1 doesn't exist between (-13,0). Hence c=-1

V = 23 V: Volume of the cube of side & $dV = 3x^2 dx$ S: Sweface area of the cube of side x. 39 = 8(x2) dx 安 S= 622 $\frac{dS}{dt} = 12x dx = 12x \left(\frac{3}{x^2}\right)$ $\frac{36 \text{ cm}^2/\text{sec}}{10} = 3.6 \text{ cm}^2/\text{sec}$. dt | n= 10cm

Company (State)

$$f(x) = x^3 - 3x^2 + 6x - 100$$

$$f'(x) = 3x^2 - 6x + 6$$

$$= 3 \cdot (x^2 - 2x + 2)$$
discriminant of the formed opendratic = $b^2 - 4ac$

$$b^2 - 4ac < 0$$
but $a > 0$: [$a = 1$]
Hence $x^2 - 2x + 2 > 0$ for all $x \in R$

$$\therefore 3(x^2 - 2x + 2) > 0$$
; $x \in R$

$$f'(x) > 0$$
; $x \in R$
Hence $f(x)$ is increasing on R

discriminant of the foremed openderation = b2-4ac = f2)2-4(1)(2) = 4 -8 = -4 ,'xER

P(2,2,1) Q(5,1,-2)

Dixection ratios of the line
$$PS = (5-2), (1-2), (-2-1)$$
= 3 , -1 , -3

Equation of Pa

$$\frac{72-721}{a} = \frac{74-41}{b} = \frac{2-21}{c}$$

$$\frac{x-2}{3} = \frac{y-2}{-1} = \frac{z-1}{-3}$$

Any point on PQ is given by (31+2, -1+2, -31+1)

$$z = -3\lambda + 1 = -3\left(\frac{1}{8}\right) + 1 = -2 + 1 = \sqrt{1}$$

y coordinate =
$$-\lambda + 2 = -\frac{2}{3} + 1 = \frac{1}{3}$$
 Hence point is $(4, \frac{1}{3}, -1)$

Hence point is
$$(4, \frac{1}{3}, -1)$$

 $= 2$ coordinate = -1

A: number obtained is even B: number obtained is red = { 2, 4, 6} = {1,2,37 P(A) = 3 = 1P(B)=3=1 ANB = number obtained is red and even P(40B) = 1 $P(A) P(B) = 1 \times 1 = 1$ P(ANB) = P(A)P(B) Hence events A and B are not independent events

1500

	Shixts	Trousers	P.	
(x) A	6	4	Fayment perday	
(y) B	10	4	₹ 400	
)	60	32		

let A for work for a and B for y days.

To Minimize : Z = 300x + 4004 constraints: 62+10y >60

4x+4y > 32

2)0

470

Par is the solution.

P(3,3) Z = 300(s) + 400(3) = 72700

g (0,8) Z = 400 (8) = 73200

R (10,0) Z = 300 (10) = 7 3000

Hence 2 is minimum when A works for 5 days and B for 3 days.

$$tan^{-1}\left(\frac{x-3}{x-4} + \frac{x+3}{x+4}\right) = tan^{-1}(1)$$

$$1 - \left(\frac{x-3}{x-4}\right)\left(\frac{x+3}{x+4}\right)$$

$$\left[\frac{1}{2\pi} \frac{\tan^{-1}(2x-3)}{2x-4} < \frac{\pi}{4}\right]$$

$$\frac{\tan^{-1}(2x+3)}{2x+4} < \frac{\pi}{4}$$

$$\frac{\tan^{-1}\left(\frac{(x-3)(x+4)+(x+3)(x-4)}{x^2-16} = \tan^{-1}(1) + \tan^{-1}(\alpha) + \tan^{-1}(\beta) = \tan^{-1}(\alpha+\beta) - \tan^{-1}(\alpha) + \tan^{-1$$

$$\frac{1}{1-\alpha B} = \frac{1}{1-\alpha B}$$

$$tan^{-1}$$
 $\left(\frac{2x^2-24}{-7}\right) = tan^{-1}(1)$

$$\frac{2x^2 - 2y}{-7} = 1.$$

$$2x^2 = -7 + 24 = 17$$

$$\chi^2 = \frac{17}{2}$$
 $\Rightarrow \chi = \pm \sqrt{\frac{17}{2}}$

20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15
= 03	$\begin{vmatrix} +3/a - 2a - 1 & 2a + 1 \\ a + 1 - a - 2 & a + 2 \\ 0 & 3 & 3 \end{vmatrix}$ $\begin{vmatrix} a^2 - 1 & 2a + 1 & 1 \\ a - 1 & a + 2 & 1 \\ 0 & 3 & 1 \end{vmatrix}$	$ \begin{array}{c c} 1 & \begin{bmatrix} C_1 \rightarrow C_1 - C_2 \end{bmatrix} \\ 1 & \end{bmatrix} $
$= (\alpha - 1)$ $= (\alpha - 1)$ \neq	$\begin{vmatrix} a+1 & 2a+1 & 1 \\ 1 & a+2 & 1 \\ 0 & 3 & 1 \end{vmatrix}$ $\begin{vmatrix} a+1 & 2a-2 & 0 \\ a+1 & 2a-2 & 0 \\ 0 & 3 & 1 \end{vmatrix}$	[Faking (a-1) common out of C_1] $\begin{bmatrix} R_1 \rightarrow R_1 - R_3 \\ R_2 \rightarrow R_2 - R_3 \end{bmatrix}$

0.

Taking (a-1) common out of Cz]

[On expanding the determinant]

$$\begin{bmatrix} = (a-1)^2 & a+1 & 2 & 0 \\ & 1 & 1 & 0 \\ & & 0 & 3 & 1 \end{bmatrix}$$

$$= (a-1)^{2} | a+1 | 2$$

$$= 1 1 1$$

$$= (a-1)^{2} (a+1-2)$$

$$= (a-1)^{2} (a-1)$$

$$= (a-1)^{3}$$

Proved.

$$e^{y} = \frac{1}{x+1}$$

(2+1)2

[Using equation (1)]

On differentiating both sides w.r.t x

$$e^{y} dy = \frac{d}{dx} (x+1)^{-1}$$

$$\frac{e^{y}}{dx} = -1(x+1)^{-1-1}$$

$$\int \frac{e^y}{dy} = -1$$

$$\int \frac{dx}{(x+1)^2}$$

$$\frac{dy}{dx} = -\frac{1}{(x+1)^2} = -\frac{1}{(x+1)^2} = -\frac{1}{(x+1)^2}$$
iffixen happing (ii) used a (x+1) = -1

On differentiating (i) wort & on both sides.

$$\frac{d^2y}{dx^2} = -\frac{d(x+1)^{-1}}{dx} = (-1)(-1)(x+1)^{-2} = 1$$

$$\frac{d^2y}{dx^2} = \left(\frac{-1}{x+1}\right)^2 = \left(\frac{dy}{dx}\right)^2$$

$$\begin{array}{ll}
I = \int \frac{\cos \theta}{\left(4 + \sin^2 \theta\right) \left(5 - 4\cos^2 \theta\right)} & d\theta \\
= \int \frac{\cos \theta}{\left(4 + \sin^2 \theta\right) \left(5 - 4(1 - \sin^2 \theta)\right)} \\
= \int \frac{\cos \theta}{\left(4 + \sin^2 \theta\right) \left(1 + 4\sin^2 \theta\right)} & Let \sin \theta = L \\
\cos \theta & d\theta \\
\left(4 + L^2\right) \left(1 + 4L^2\right) \\
\left(4 + L^2\right) \left(1 + 4L^2\right) & \left(4 + L^2\right) \left(1 + 4L^2\right) \\
= \frac{1}{15} \left(\frac{1}{4 + L^2} - \frac{4}{1 + 4L^2}\right) \\
= \frac{4}{15} \left(\frac{1}{1 + 4L^2}\right) - \frac{1}{15} \left(\frac{1}{4 + L^2}\right) \\
= \frac{4}{15} \left(\frac{1}{1 + 4L^2}\right) - \frac{1}{15} \left(\frac{1}{4 + L^2}\right)
\end{array}$$

 $\int \frac{1}{a^2 + x^2} dx = \int \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$

$$\Gamma = \iint \left[\frac{4}{15} \left(\frac{1}{4t^2 + 1} \right) - \frac{1}{15} \left(\frac{1}{4 + t^2} \right) \right] dt$$

$$= \frac{4}{15} \int_{1+4t^{2}}^{1} dt - \frac{1}{15} \int_{2^{2}+t^{2}}^{1} dt$$

$$= \frac{1}{15} \int_{\left(\frac{1}{2}\right)^{2}+t^{2}}^{1} dt - \frac{1}{15} \int_{2^{2}+t^{2}}^{1} dt$$

$$= \frac{1}{15} \times \frac{1}{1/2} \tan^{-1} \left(\frac{t}{1/2} \right) - \frac{1}{15} \times \frac{1}{2} \tan^{-1} \left(\frac{t}{2} \right) + c$$

$$= \frac{2 \tan^{-1}(2t) - 1 \tan^{-1}(\frac{t}{2}) + c}{30}$$

=
$$\frac{2}{15} \tan^{-1} \left(\frac{2 \sin \theta}{30} \right) - \frac{1}{30} \tan^{-1} \left(\frac{\sin \theta}{2} \right) + c$$

$$= \frac{1}{30} \left(\frac{\tan^{-1}(2\sin\theta)}{30} \right) = \frac{1}{30} \left(\frac{4\tan^{-1}(2\sin\theta)}{2\sin\theta} \right) - \tan^{-1}(\sin\theta) + C$$

$$\frac{17}{17} = \frac{1}{17} = \frac{1}{17$$

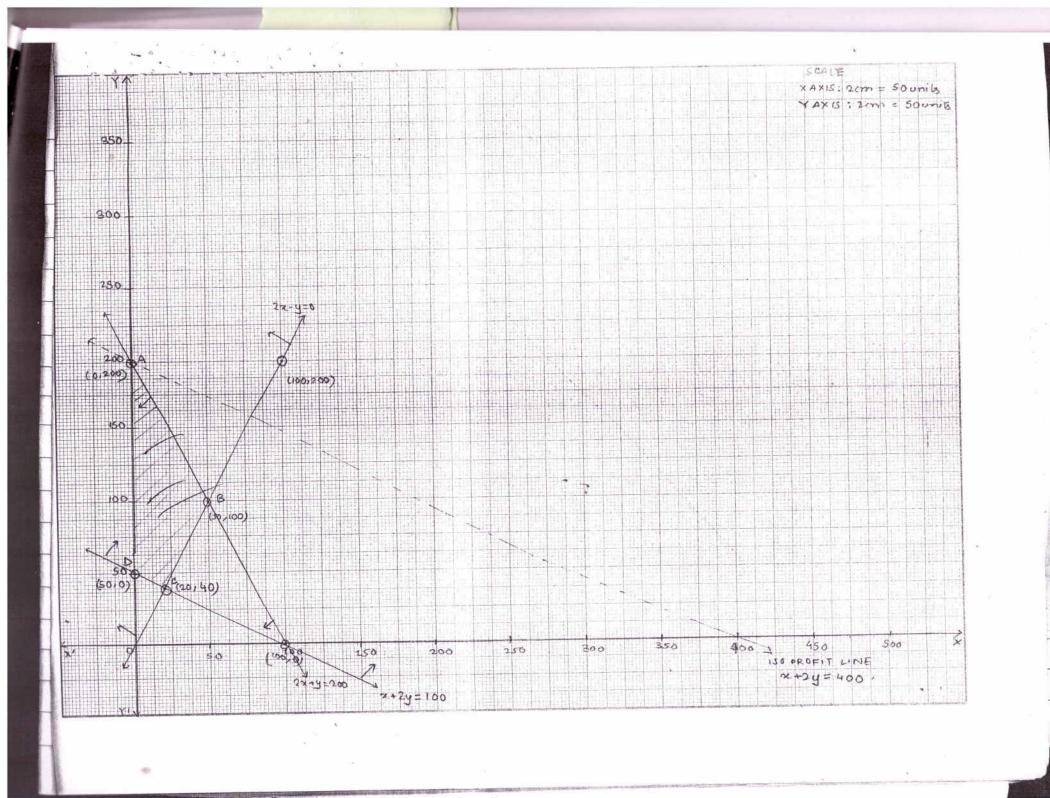
$$= \begin{cases} x - 1 - x + 2 - x + 4 & \text{; } 1 \le x < 2 \\ x - 1 + x - 2 - x + 4 & \text{; } 2 \le x \le 4 \end{cases}$$

$$= \begin{cases} 5 - x & \text{; } 1 \le x < 2 \\ x + 1 & \text{; } 2 \le x \le 4 \end{cases}$$

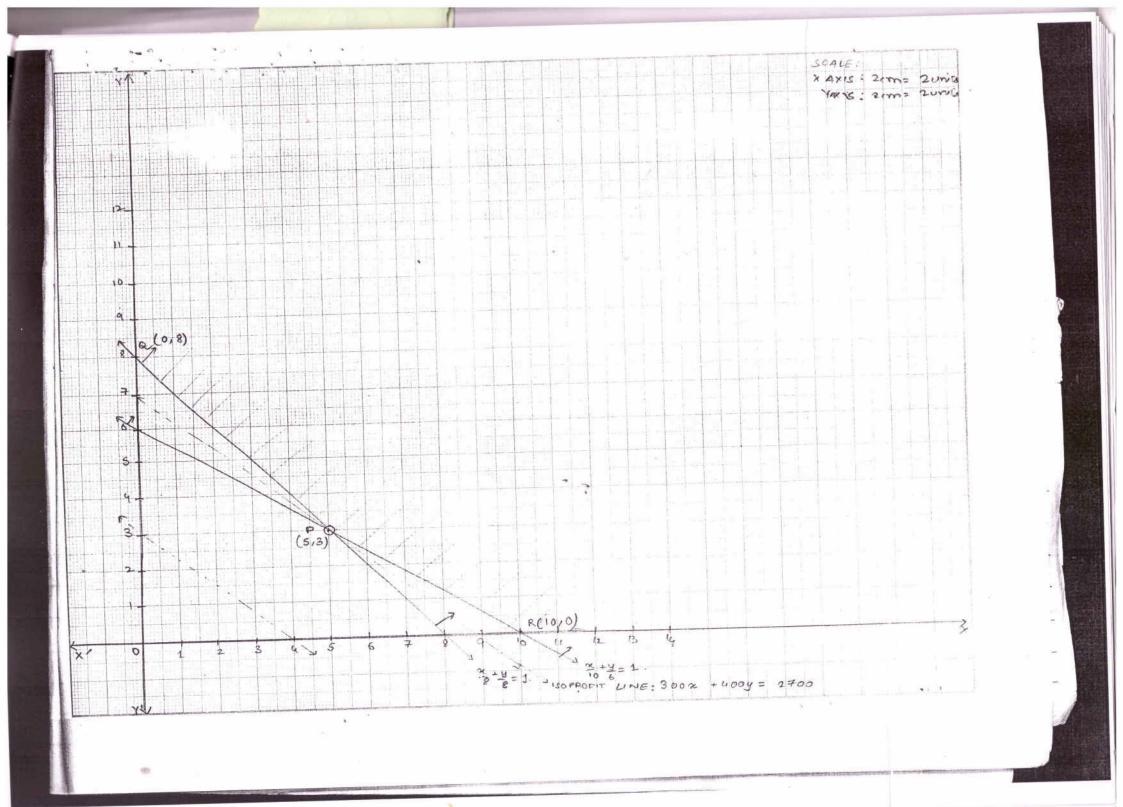
$$I = \int_{1}^{4} \{ [x-1] + [x-2] + [x-4] \} dx$$

$$= \int_{1}^{2} (5-x) dx + \int_{2}^{4} [x+1] dx \qquad \left[\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx \right]$$

$$= \left[5x - \frac{x^{2}}{2} \right]_{1}^{2} + \left[\frac{x^{2}}{2} + x \right]_{2}^{4}$$


18) (tan-1x-y)dx = (1+22)dy dx + y = tan 1x Integration factor = esper estimate $e^{\tan^{-1}x} \left(\frac{dy + y}{dz} \right) = e^{\tan^{-1}x} \frac{\tan^{-1}x}{t+x^2}$ $d \left(\frac{dy + x^2}{dz} \right) = e^{\tan^{-1}x} \frac{\tan^{-1}x}{t+x^2}$

dx $1+x^2$ $1+x^2$ dy + Py = Q Hence is a linear differential equation rolution $P = \frac{1}{1+x^2}$ Integration factor = $e^{\int Pdx} = e^{\int 1+x^2}dx$ = $e^{\tan^{-1}x}$ $e^{\tan^{-1}x} \left(\frac{dy}{dx} + \frac{dy}{dx} \right) = e^{\tan^{-1}x} \frac{\tan^{-1}x}{\tan^{-1}x}$ Go multiplying both sides $d(ye^{\tan^{-1}x}) = e^{\tan^{-1}x} \frac{\tan^{-1}x}{\tan^{-1}x}$ by integration factor in the factor in t


Let le tan-1x tan-1x dx be I,

 $tan^{-1}x = t$ $\int_{1+2\pi}^{2\pi} e^{t} t dt$

20

11 GENERAL PROPERTY.

$$I_{1} = \int_{\underline{T}} e^{t} t dt$$

$$= t \int_{\underline{T}} e^{t} dt - \int_{\underline{T}} d(t) \int_{\underline{T}} e^{t} dt dt$$

$$= t e^{t} - \int_{\underline{T}} e^{t} dt$$

=
$$te^{t} - e^{t}M_{r}$$

= $e^{t}(t-1)$
= $e^{tan^{-1}x}(tan^{t}x-1)$

$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$$

$$\overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$$

$$\overrightarrow{OC} = 3\hat{i} - 4\hat{j} - 4\hat{k}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= -\hat{i} - 2\hat{j} - 6\hat{k}$$

$$|AB| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} = \sqrt{41}$$
 unity $\frac{25}{19}$

$$\vec{A}\vec{c} = \vec{0}\vec{c} - \vec{0}\vec{A} = \hat{i} - 3\hat{j} - 5\hat{k} \cdot |\vec{A}\vec{c}| = \sqrt{1^2 + (-5)^2} = \sqrt{35}$$
 units

$$\vec{BC} = \vec{OC} - \vec{OB} = 2\hat{i} - \hat{j} + \hat{k} \qquad |\vec{BC}| = \sqrt{(2)^2 + (1)^2 + (1)^2} = \sqrt{6} \quad unif$$

Henre hair DABC is right angled at C.

$$axea = \frac{1}{2} | \overrightarrow{AC} \times \overrightarrow{BC}|$$

$$=\frac{1}{2}\begin{bmatrix}\hat{1} & \hat{3} & \hat{k} \\ 1 & -3 & -5 \end{bmatrix} = \frac{1}{2}[\hat{i}(-8) - \hat{j}(11) + \hat{k}(5)]$$

$$= \frac{1}{2} \sqrt{(8)^2 + (-1)^2 + (5)^2} = \frac{1}{2} \sqrt{210}$$

$$= 1\sqrt{210}$$

$$= 1\sqrt{210}$$

$$= 1\sqrt{210}$$

$$= 1\sqrt{210}$$

$$= \sqrt{210} \text{ sov. units}$$

$$= \sqrt{210} = \sqrt{52.5} \text{ sov. units}$$

$$= \sqrt{210} = \sqrt{52.5} \text{ sov. units}$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = -2\overrightarrow{1} - 4\overrightarrow{1} - 6\overrightarrow{k}$$

$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -\overrightarrow{1} - 3\overrightarrow{1} - 8\overrightarrow{k}$$

$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{1} + 0\overrightarrow{1} + (\lambda - 9)\overrightarrow{k}$$

= 0

217

 $6\lambda - 54 - 4\lambda + 68 - 18 = 0$ $2\lambda = 54 + 18 - 68$ $2\lambda = 72 - 68 = 4$

 $\lambda = 2$

24

	17				
21	×	P(x)	X P(X)	P(X) X2	
	P.			,	
	. 4	P((1,3),(3,1))	2 × 42= 2 1263 3	2 ×4 = 8	
7		$= \frac{1 \times 1 + 1 \times 1 = 2}{4343}$	1263 3	$\frac{2 \times 4}{3} = \frac{8}{3}$	
1		4343 12	6		
	1				.30
	6	P ((1,5), (5,1))			72-1
		$= \frac{1}{4} \times \frac{1}{3} + \frac{1}{1} \times \frac{1}{1} = \frac{2}{12}$	$\frac{2 \times 6}{12} = 1$	1×6 = 6	72-1 15 1220 50 1220 122 3. 152
000		7 3 9 3 72	1-		= 4 75.2
		000-11-11-11			40.667
1	- 8	P((1,7),(7,1),(3,5),(5,3))			70.667
		=1×1 +1×1 +1×1 +1×1,=4 43 43 43 43 12	4 ×8 = 8	3 3	6. 667
		0 .0	, 5 3	3	
	10	P ((3,7), (7,3))			I and the second
-#					
		$\frac{-1 \times 1 + 1 \times 1}{43} = \frac{2}{12}$	$\frac{10 \times 2}{126} = \frac{5}{3}$	5×10 = 50	
	12	P ((5,7), (7,5))			
			12×2 = 2	2×12 = 24	. *- 1
		$= \frac{1}{4} \times \frac{1}{3} + \frac{1}{4} \times \frac{1}{3} = \frac{2}{12}$			
1.4	0.00				

$$\vec{X} = \frac{123}{2} P(X_i) X_i$$
 $i = \frac{4}{3}$

$$= \frac{2+1+8+5+2}{3} + \frac{5}{3} + \frac{2}{3}$$

$$= \frac{3+15}{3} = \frac{8}{3}$$

Vaxiana =
$$\left(\frac{\sum_{i=4}^{2} P(x_i) \times i^{2}}{3} + \frac{\sum_{i=4}^{2} P(x_i) \times i^{2}}{2} - \left(\frac{\sum_{i=4}^{2} P(x_i) \times i}{2}\right)^{2}$$

= $122 + 30 - 64$
= $40.667 + 30 - 64$
= $70.667 - 64$
= 6.667 .

4.0

2	E1: Event Hat students have 100% attendance	Ez: Event that studeni	to are invegular
'	P(F1) = 30	P(E2) = 70	V
	100	100	-
	A: Student has grade A		
1	P(AKEI) = 70	P(A1E2) = 10 .	
/	100	100	
	P(EIIA) = P(EI) P(AIEI)		
	P(F1)P(A1F1) + P(F2) P(A	16 ₂)	
	$=\frac{30 \times 70}{100 \times 100}$	* ?	2100
	$\frac{30}{100} \times \frac{70}{100} + \frac{70}{100} \times \frac{10}{100}$		2100
-			$\frac{21}{21+7} = \frac{2}{3}$
	= 2100 = 3		
	2800 4		1
a	Yes regularity is required in school for d	liscipline as well as scaring	a quall in
11	V U		4 well m

academics.

	(e.,			<u>.</u>				
-		1.	=					
23	Z = 2	+ 2y						
-	Constrain	ts: 2+2y ≥	100	L1 => x+	ay =100	L2 >	2x-4 = A	
er - washing		2x-y <			$\frac{+y}{50} = 1.$		y = 2x	
	ļ	22+4 €	200					
		n>0		PG: (100,0)	(se 0,50)	Pt	(50,100)	, (100,20
- 6	 	y ≯o.						
-)			L3 => 2x+0	1 = 200			
				7 + 5	¥ = 0 ·	**************************************		
				· 62 (100'0),(0,200)			
	Solution	is in the xegic	m ABCD.				4	
	A	(0,200)	2= 2	+2y = 400				
	8	(50,100)	てこり	1+2y = 50+200	= 250			
	c	(20,40)	Z = 9	c+2y = 20 + 80	= 100		4-1	ŭ.
					0 9	1		
	D	(50,0)		+2y = 50				
-60	-Hence	Zis maximus	m when.	x=0 y=200	[at (0,20	[(00		

SECTION	4	:	-
---------	---	---	---

$$= (-4)1 + 4(1) + 4(2) -4(-1) + 4(-2) + 4(1) -4(1) + 4(-2) + 4(3)$$

$$-7(1) + 1(1) + 3(2) -7(-1) + 1(-2) + 3(-2) -7(1) + 1(-2) + 3(+3)$$

$$5(1) -3(1) -1(2) 5(-1) -3(-2) -1(1) 5(1) -3(-2) -1(3)$$

KX 55/8

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

AX = B $X = A^{-1}B$ x = 1 $\begin{array}{c}
 -4(4) + 4(9) + 4(1) \\
 -7(4) + 1(9) + 3(1)
\end{array}$ 5(4) -3(9) -1(1) -16+36+47 -28 +9 +3 20-217-1 24 -16 -8 1 x] =

-2

-4 4 47 A = 8I s -3 -1

Hence 2=-1 $f: R - S - 43 \rightarrow R - 542$ Let f(x1) = f(x2) 421+3 =422+3 321+4 322+4 421+3)(322+4) = (4(22+3)(321+4) 122/22+922+1621+1/2= 122/22+921+1622+12 721 = 722 21 = 22 Hence f(x) is one to one. Let y = 4x+3 y (32+4) = 42+3 324 + 44 - 43 = 3 x (3y-4) = 3-4y. 2 = 3-44 (37y-4)

-12y +16 = 9 - 12y 16 = 9 which is not possible; Hense x cannot be -4 Hence f(x) is onto function -.. f(x) is a bijective. Hence f'exists f(f-1) fof(x) = x By the definition of inverse $f\left(f^{-1}(x)\right) = x$ $4f^{-1}(x) + 3 = x$. 3f-(2)+4 4f-1(x) +3= 32f-1(x) +42 f-1(x) (4-3x) = 4x-3 $f^{-1}(x) = 4x-3 = 3-4x$ 4-3x = 3x-4 $f^{-1}(0) = 3 - 4(0) = 3 = -3$ 3(0) - 4 - 4 . 4 $f^{-1}(\alpha)=2$ 3-42 = 2 => 3-42 = 62-8 32-4 102=11 2=11

Let its volume be V and surface area be S

$$V = x^{2}y$$

$$S = 2(x^{2} + 2xy)$$

$$= 2x^{2} + 4xy$$

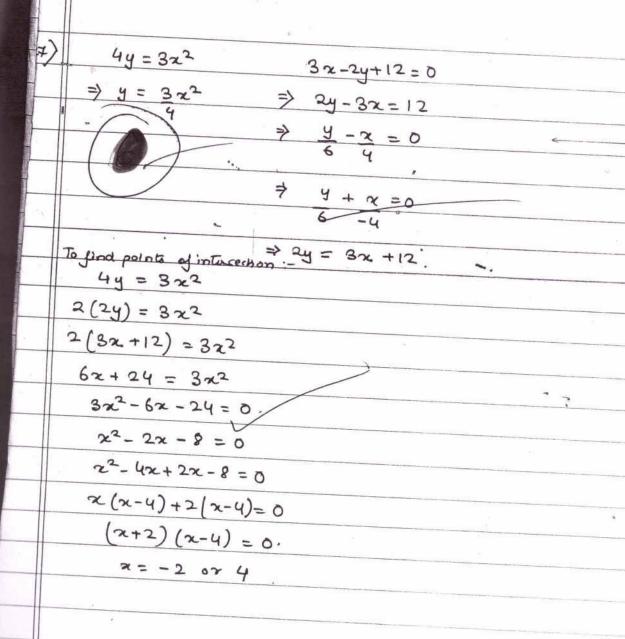
$$= 2x^{2} + 4x \frac{\sqrt{x^{2}}}{x^{2}}$$

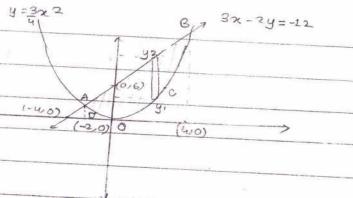
$$= 2x^2 + 4v$$
 \overline{x}

$$\frac{dS}{dx} = \frac{d\left(2x^2 + \frac{4v}{x}\right)}{dx} = \frac{4x + 4v(-1)}{x^2} = \frac{4x - 4v}{x^2}$$

$$\frac{d^2s}{dx^2} = \frac{4 - 4v(-2)}{x^3} = \frac{4 + 8v}{x^3}.$$

To maximize or minimize S, ds =0


$$4x-4v = 0$$
. $d^{2}S = 4 + 8y = 12$ which $\dot{\omega} > 0$ $dx^{2} | x = v^{2}S$


42 = 4V

23=V x32 Hence S is minimum at x=V3

x= 1/3

Hence the given cuboid is a cube of side z.

Henre of ODABCO

area = 4 (42-41) dx

$$= \int_{-2}^{4} \frac{3x+12}{2} \frac{-3x^2}{4} dx$$

$$= \begin{bmatrix} \frac{3}{2} & \frac{2^{2}}{2} & + 6x & -\frac{3}{2} & \frac{23}{4} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{2} & \frac{2^{2}}{2} & + 6x & -\frac{23}{4} & \frac{4}{4} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{3}{4} & \frac{2^{2}}{4} & \frac{23}{4} & \frac{4}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 3(18) + 6(4) - 184 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \times 4 - 12 - (-8) \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 124 + 24 - 18 \end{bmatrix} - \begin{bmatrix} 3 - 12 + 2 \end{bmatrix}$$

$$(x-y) dy = x+2y$$

$$\frac{dy}{dx} = \frac{x+2y}{2-y}$$

$$\frac{dy}{dx} = \frac{1+2(\frac{y}{x})}{1-(\frac{y}{x})}$$

$$dy = \frac{1}{1 - \left(\frac{y}{x}\right)}$$

V+2 dv = 1+20

$$\frac{dy}{dx} = f(\frac{y}{x})$$
 Hence the solution of differential equation is that of a homogenous solution.

Let y=vx dy=v+xdv

$$\frac{2}{3}$$
 $\frac{1}{3}$ $\frac{1}$

$$\sqrt{1+v+v^2}$$
 du = dx

On integrating both sides :-

$$\int \frac{1-v}{1+v+v^2} dv = \int \frac{dx}{x} + c.$$

$$\int \frac{1-v}{1+v+v^2} \, dv = (\pi/x) + C.$$

$$\int \frac{1-v}{1+v+v^{2}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v+v^{2}} dv = (m|x|+c)$$

$$\int \frac{2-2v}{1+v+v^{2}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v+v^{2}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v+v^{2}} dv = 3 \int \frac{1-v}{v^{2}+2\cdot v\cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v+v^{2}} dv = 3 \int \frac{1-v}{v^{2}+2\cdot v\cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v+v^{2}} dv = 3 \int \frac{1-v}{v^{2}+2\cdot v\cdot \frac{1}{2}+\frac{1}{4}+\frac{3}{4}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v+v^{2}} dv = (m|x|+c)$$

$$\int \frac{1-v}{1+v$$

-r 1

CBSF

21.00		
	(2/3 tan-1/24+x) = ln x2 + xy+y2 + e1 [c'=2c]	
	$y=0$, $\alpha=1$	
	34	2000
		_
	$2\sqrt{3} \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) = \ln 1 + C'$	
	c1 = 25 × 17 = 15	-
	$c' = 2\sqrt{3} \times \Pi = \sqrt{3}\Pi = \Pi$ $\cancel{83} 3 \sqrt{3}$	
	Hence;	-
	$2\sqrt{3} \tan^{-1} \left(\frac{2y + x}{3x} \right) = \ln \left(\frac{\pi^2 + \pi y + y^2}{3} \right) + \pi$	-
	73,	- 1

· .

		40	
29	, and the second	1	
	A Let A (a,0,0)		
	B (0, b, 0)		
	c (0, 0, c)		
	C (0, 0, 1)	7	
	Then untroid of ΔABC is $G\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$.	· e	
	(3 3 3).		
	bet the The equation of the plane is given by !-		
	1 1 2-21 1		
	$x_2 - x_1$ $x_2^2 - y_1$ $x_2 - z_1 = 0$		1
1	x3-x1 y3-y1 23-21		10
1			
1	n-a 4 2 1		# 1
			BA S
			-
	-a o oc.	7	
	$\frac{2}{3}(x-a)(bc) - y(-ac) + 2(ab) = 0$ $\frac{1}{3}xbc - abc + acy + abz = 0$	1	
	1 2bc - abc + acc + acc		
	26 de be a + 000 = 0		
	distance of the order last about 0. = 1 2 + 4 + 2 -1 = 0		
	distance of the origin from the plane = 3p.		
	10		

$\frac{1}{\sqrt{2}} = 3p$ $\frac{1}{\sqrt{2}}$	47
$\frac{3\pi \sqrt{3}}{100} = \frac{1}{100} $	
No $Q^2 \ b^2 \ c^2 \ 9p^2$ Let the centroid to be at (x, y, z) $x = a \ y = b \ c = z \ (a) \ (b) \ (c) \ p^2$	
$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = 1$ $\frac{1}{x^2} + \frac{1}{y^2} = 1$ Proved:	
Hence locus of Gr is $\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{z^2}$	
	· Pael