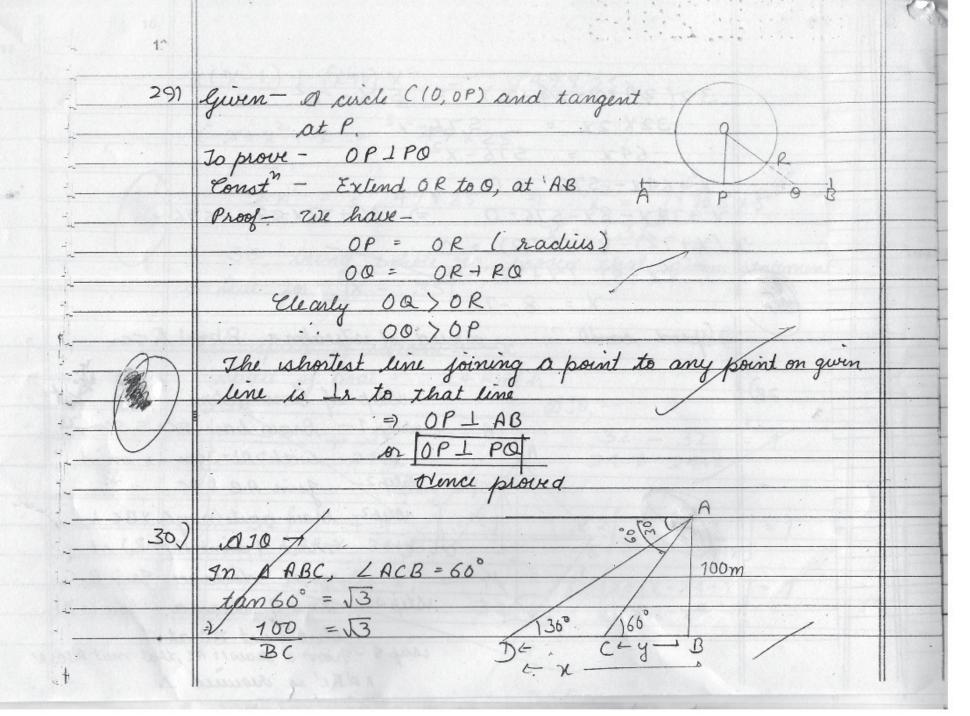

	Section D	
_	2-m	
1)	We have-	
	Radius of cylindrical and conical base = 2.8m. 35	
elk.	Height of cylinder = 3.5 m.	
-	Deight of conical part = 2.1 m	
	Slant height of conical part = \bit_+12	
	Slant height of conical part = $\sqrt{h^2+\chi^2}$ $\Rightarrow \sqrt{(2.8)^2+(2.1)^2} \Rightarrow \sqrt{7.84+4.41}$	
		7.0
	$l = \sqrt{12.25m^2} = l = 3.5m$	7
	Total canvas required = C.S.A of cylinder + C.S.A of cone to make 1 tent =1 2 Tirh + Tirl	
	$=1$ $\pi r(2h+l) \Rightarrow 22 \times 2.8(2 \times 3.5 + 3.5)_{m}$	2
	7	n
	=1 (22x.4x (7+3.5)) (8.8 x 10.5) m ²	
- 1		
	Canvas veguired to make 1500 such tent = 192.4 m =	
-	= 192.4 × 1500	
4	1386000m² = 138600m²	

₹126× 138600 y each std, when there are 50 wchool 126 × 13,8600 E12 x 27720 2 F332640 Value - Dulp the needy other at X and O'D LAC

To find = DO' radius of each circ => A ADO'~ AACO by AA similarily

By $C \neq C$. AO' = O'D = AD AO OC AC(AO = 2 = AO = 32) chord 1 = Do" whs: - DO = 1 23) we have -Jotal possible outcome = 1, 2, 3, 4 & 1, 4, 9, 16 = 16 Total favourable went having product less than 16 = 9+1, 2, 3, 4, 4, 8, 12 = 7+1= 8 Probability = Favourable (went) outcome Total went P[E] = 7+1 = 8-1 = 1 16×16 2ons: - /1/2



8	
	$\frac{1}{2} \left[\left(\frac{195 - 200}{3} \right)^{\frac{1}{3}} \right] = \frac{1}{3} \left \frac{-5}{3} \right ^{\frac{2}{3}} = \frac{1 \times 5}{5} = \frac{5 \text{ und}^2}{6}$
	One of $\triangle ADE = \frac{1}{2}\frac{\sqrt{5}}{3} = \frac{1}{3}$ $\Rightarrow \frac{1}{3}$ $\Rightarrow \frac{1}{3}$ $\Rightarrow \frac{1}{3}$ $\Rightarrow \frac{1}{3}$ $\Rightarrow \frac{1}{3}$ $\Rightarrow \frac{1}{3}$
	$ar(\Delta ADE) = \frac{1(ar \Delta ABC)}{9}$
25)	Given - OAP is sector of sircle with centre O, LPOA = O and OA LAB OOR A
	Parimetre of shaded regin = r[tam0+we0+10 - 1]
	Proof - Primetre of shaded vigion = BP+ AB+ ar AP - (IV) = 00
	$tan0 = AB \Rightarrow rtan0 = AB$
	sec 0 = OB = r $0B-0P = BP = r sec 0 = OB$ $0B-0P = BP = r sec 0 - r = BP - 2$
	06-01 - 01

U

10		1/18
081	$\frac{\chi(\chi-1)}{2} + (\chi+1) \frac{\chi}{2} = 49 \times 25$	
VT	$\chi^2 - \chi + \chi^2 + \chi = 49 \times 25$	1
- Page	$2x^2 = 49 \times 25 = 7 \times 7 \times 5 \times 5$	
	35, being robole no, proved that, given statement is true for $X = 35$	
27)	you aprile of sinearin = K	
	Speed of boot = 24 km/h. 010-	
	$32 + 32 = 1$ $32 - 32 = 1$ $24 - \chi$ $24 - \chi$ $24 - \chi$	
	"Sorry Sir/Mom" $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
	$\frac{1}{32} \frac{24 + \chi + (24 - \chi)}{576 - \chi^2} = \frac{1}{32} \frac{24 + \chi - 24 + \chi}{576 - \chi^2} = 1$	
+	08-08-88-88-88-88-88-88-88-88-88-88-88-8	

4		
31)	Let length of park = x	
F	Its breadth = 1 x-3.	
	dua = x(x-3) m²	
	Base of isoceles 0 = x-3	
	and altitude = 12m	
-	$\frac{\int t_{0} \operatorname{areo} = \frac{1}{2} (12 \times \chi - 3) m^{2}}{2} = 6(\chi - 3) m^{2}$	
H-		
=	Ø J0 -+	
4-	$+ \chi(\chi - 3) = 6(\chi - 3) + 4$	
ΨŢ	$\chi^2 - 3\chi = 6\chi - 18 + 4$	
	$\chi^2 - 3\chi = 6\chi - 14$	
-1-98	$\chi^2 - 3\chi - 6\chi + 14 = 0$	
-	$\chi^2 - 9\chi + 14 = 0$ (B. 400101010 M.Ha)	
-	$\chi^2 - 7\chi + 14 = 0$ (By factorisation Method)	
- (19%)	$\chi(\chi-7)-2(\chi-7)=0$	
-	$\chi = 2, 7$	1.2.2
	Length of rectangle field = 7m	
-	& breadth = (9-3)m = 4m	
_	(hength can't be 2, because of) then breadth = -1,	
	and usit possible).	
	Ons: - 7m, 4m vispectively	

No.		15
30141	Section 6-	
11	9 Given The point $P(x,y)$ is equidistant from point $A[(a+b),b-a]$ & $B[(a-b),(a+b)]$ To prove = $bx = ay$ $Proof$ $AP = BP \Rightarrow AP^2 = BP^2$	
	To prove = bx = ay Proof -	
	$A P = BP = AP^2 = BP^2$ By distance formulo: $\sqrt{(\chi_2 - \chi_1)^2 + (y_2 - y_1)^2}$ $AP^2 = BP^2$	
	$= \frac{1}{2} \left[(2 + (a + b))^{2} + [y - (b - a)]^{2} - [x - (a - b)] + [y - (a + b)]^{2} \right]$	
	$= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2y(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2y(a+b)$ $(b-a)^{2} - 2\chi(a+b) + 2y(a-b) = (a-b)^{2} - 2\chi(a-b) - 2y(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + 2\chi(a-b) + 2\chi(a-b) + 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + 2\chi(a+b)$ $= \chi^{2} + (a-b)^{2} - 2\chi(a-b) + y^{2} + (a+b)^{2} - 2\chi(a-b) + y^{2} + y^$	
(4)		7
1	= 4ay = 4bx $ ay = bx $ Hence proved	
		1

hod)

А. 16		
. 12)	Radius & height of conical vessel = 5	cm & 24 cm vrisp.
	Radius & height of conical vessel = 5 Volume of come = $\frac{1}{3}\pi r^2 h$	
	Volume of cone = 1 TX 25 x 24 0	
# <u>-</u>	volume of cone = volume of =) 1 # x 25 x 24 = TV x 10 x 10	cylinder
15-	=) 1 7 x 25 x 24 = TV × 10 x 10	S x h. Svolume of -]
	200 cm = h	$Conv = \frac{1}{3}\pi r^2 h$
- (1)	The Control of the Co	(Cylindu= Tr2h)
	= 2cm = h	A
13)		
	Radius of semicircle ACB = 13 cm. Source of semicircle - 2 AV2x1 9ts grea = 1 x3.14 x 13 x 13 cm ² 2 2 2	3
**************************************	9ts grea = 1 x3.14 x 13 x 13 cm² 2	
	3.14 × 169 cm² =	
	8	8

PAY 4	Volume isubmerged = Volume rise. Let iradiis of cylinder be rom
	Let radius of cylinder be rom
300 6 9	
1	$\frac{1}{3} + 4 \times 6^{3} = 4 \times 2 \times 32 \text{ cm}$
	$\frac{27216 \times 3 \times 4}{324} = x^2$
30000	324
	$= 14 \times 27 \times 3 = 2^{2} = 14 \times 81 \text{ cm}^{2} = 2^{2}$
	4
	$l = \frac{9 \text{ cm}}{m}$
	Diametre = 22 = 2 × 9 cm = 9 cm × 2 = [18 cm]
	#
15)	Radius of cylinder as well as conical part= 3 cm.
	2
N Middle Sa	Neight of culinder h= 2.1m
Tru P= 0	stant height of cone 1 = 2.8m.
	Total commen required = 2 Th + Trl
1	Deight of cylinder, $h^2 2.1m$ Stant height of cone, $l = 2.8m$. Total canvas required = $2\pi rh + \pi rl$ $\pi r(2h+l)$
•	$=) \frac{22 \times 3}{7} \left[4.2 + 2.8 \right] m^2$
	7 2 6

20		
17)	Let AC = be height of hill and AB = hm A 9n A BCE,	
	where BC = 10 m & 28EC = 30° E 166° B tan 30° = 1 TO TO TO TO TO TO TO TO TO T	
	. 13	
10	BE V3 BE V3	
	$= 10\sqrt{3} m = BE = CD$ Distance of hill from whip= $10\sqrt{3}m = 10\times1.732 m$ = $17.32 m$	
- (n	In A ABE-, where AB=hm, BE=1053m & LAEB=60°	
- The state of the	$tan 60° = \sqrt{3}$ $\Rightarrow h = \sqrt{3} \Rightarrow h = .10 \cdot 3 \times \sqrt{3}$	
	$\frac{10\sqrt{3}}{\text{deight of hill} = h + 10m}$	
	740mf	
-		

				21
		18)	Let theel digit of 3- digit no be- a-d, a, a+d.	
			Thur wum = 15	
			a-d+a+a+d=15 =) 3a=15 =) a=5	
			Required 3 digit no = 100 (a-d) + 10 a + a + d	
			1000-1,00d+10a+a+d	
- 46"			111a-99d	
			No obtained by versing digit = 100(a+d)+10a+a-d	
			100a+100d+10a+a-d	
			111a+99d	
			A10-	
			111a + 99d = 1110 - 99d - 594	
		(Max	= 594 = 1 $11a-99d-1116-99d$	
	1045.		594 = -198d	
		1	-594 = d	
			198	
			1-3=d.	
			The no = 111a - 99d	
			111×5-39×-3	
			ss5+29.7 = 852	
		No.	=) 852 or 258	
			A STELLY TO MENTER OF THE CO.	

19) $(a-b)x^2 + (b-c)x + (c-a) = 0$ The root are equal, then D=0Comparing eq by $ax^2 + bx + c = 0$ a = (a-b); b = (b-c); c = c-a

 $D_{-} = b^{2} + 4\alpha c$ $-(b-c)^{2} - 4x(a-b)(c-a)$

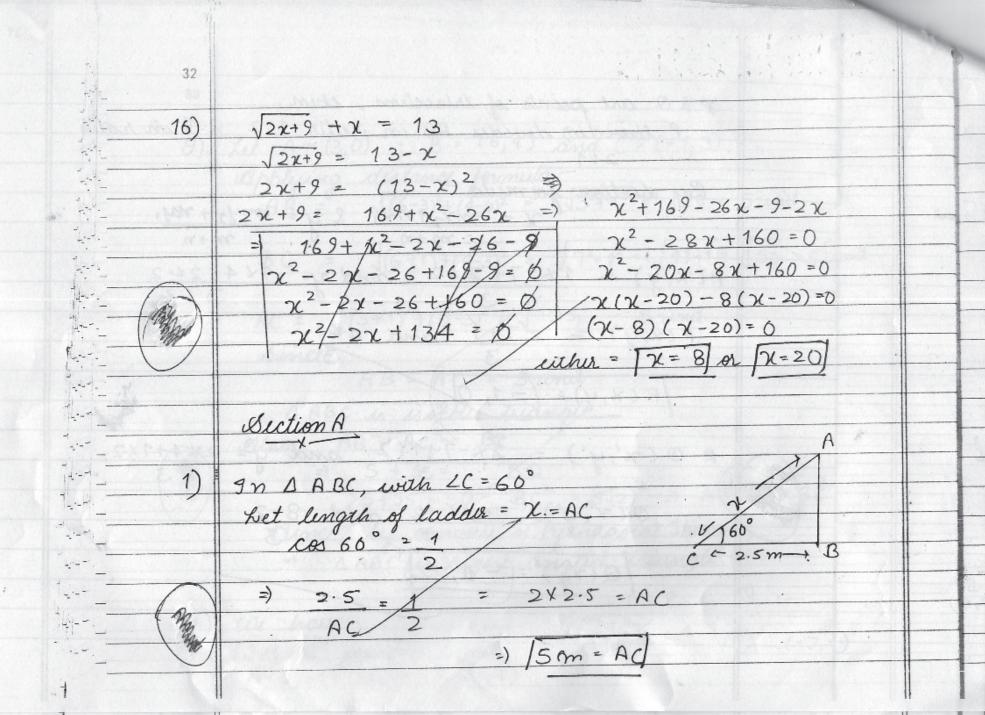
Thue, $\mathfrak{D} = 0$ $(b-c)^2 - 4(0-b)(c-a) = 0$ $b^2 + c^2 - 2bc - 4(ac - a^2 - bc + ab) = 0$ $b^2 + c^2 - 2bc - 4ac + 4a^2 + 4bc - 4ab = 0$

 $4a^{2}+b^{2}+c^{2}+2bc-4ab-4ac=0$ =) $(-2a+b4c)^{2}=0$. $(a^{2}+b^{2}+c^{2}+2ab+2bc+2ca=(a+b+c))$ -2a+b+c=0 [b+c=2a]

Tince proved

20) Jotal cards = 52 Cards removed: 6 Card left - 52-6 246

e		27
71	" Jotal black king = 2.	
	" Jotal black king = 2. Probability of drawing black king = 2 = 1 1	
	Jotal red card = 26-6.	
	- 10	
	Probability of drawing red colour card = 20 = 10.	
(Man)	/ Total card of black colour = 26	
7	Istal card of black colour = 26 Probability of drawing black colour card = 26 = 13.	
	Section B	
5	Given a quadrilateral circumscribing 5.	
33 203	a circle, with centreO, such that	
	it touches uside AB, BC, CD, AD at P, O, RLS A P B	
	To prove = AB+CD = BC+DA	
.584	Proof Length of tangent drawn from external point are	*
	AP = AS - LOVEA) -0	
	$BP = BQ \rightarrow (at B) - 2$	
	DR = DS - (atc) - (a)	


Bodding eq 0, 0, 0, 0 (1) AP+BP+ DR+CR = AS+DS+B0+C0 [AB+CD = AD+BC] Thence proved. 6) The have, $a_4 = 0$ $a+3d=0$ a			
AP+BP+ DR+CR = AS+DS+B0+C0 AB+CD = AD+BC Thence proved. 6) row have, $a_4 = 0$ $a+3d=0$		Adding eq O, E, B, (9)	
Thence proved. 6) The howe, $a_4 = 0$ $a+3d=0$ $3d = -a$ $3d = -a$ $3d = a = 0$ Now, $a_2 = a + 24d$ $a_3 = a + 24d$ $a_4 = a_1 = a_1$	1974	AP+BP+ DR+CR = AS+DS+BO+CO	
6) $20i$ have, $a_4 = 0$ $a + 3d = 0$ $[a + (n-1)d = a_n]$ 3d = -a on - 3d = a = 0 Now, $a_{25} = a + 24a$ $[a + (n^2) + a_n]$ $-3d + 24d$ (Putting value of $a_1 = a + 10d$ $a_{11} = a + 10d$ $a_{22} = a + 10d$ $a_{33} = a_{34} = a_{34} = a_{34}$	451	AB+CD = AD+BC	
6) $20i$ have, $a_4 = 0$ $a + 3d = 0$ $[a + (n-1)d = a_n]$ 3d = -a on - 3d = a = 0 Now, $a_{25} = a + 24a$ $[a + (n^2) + a_n]$ $-3d + 24d$ (Putting value of $a_1 = a + 10d$ $a_{11} = a + 10d$ $a_{22} = a + 10d$ $a_{33} = a_{34} = a_{34} = a_{34}$		Dence proved.	
$a_{4} = 0$ $a + 3d = 0$ $3d = -\alpha$ $on - 3d = \alpha$ $a_{25} = \alpha + 24d$ $= 21d$ $a_{11} = \alpha + 10d$ $-3d + 10d$ $= 7d$ $(a + (n-1)d = a_{n})$			
$a+3d=0 \qquad [a+(n-1)d=a_n]$ $3d=-a$ $on-3d=a \qquad [a+(n-1)d=a_n]$ Now, $a_{2s}=a+24a \qquad [a+(n-1)d=a_n]$ $-3d+24d \qquad (Prutung value of a'' from eq 0)$ $a_{11}=a+10d$ $-3d+10d$ $=7d \qquad (a=-3d)$	6,	Tou hove,	
3d = -d $01 - 3d = a$		$a_4 = 0$	
Now, $a_{25} = a + 24a$		$a+3d=0 \qquad \left[\alpha+(n-1)d=a_n\right]$	·
Now, $a_{25} = a + 24d$	= 981	$3d = -\alpha$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 751	on -3d = a 2 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Now,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2-1	a25 = a + 24 d [a+(32) = 0n]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-3d+24d (Putting value of	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(The state of the	= 21d/ - 3 'a" from eq 0)	
/= 7d -3 (a=-3d)	300	a11 = a+10d	
	120000	/= 7d -3 (a=-3d)	
From eq (2) & eq (3)		From eq D l eq 3	
$\sqrt{a_{25}} = 3a_{11}/\sqrt{a_{25}}$	2/3	$7a_{25} = 3a_{11}/$	
Dena Proud.			

29 7) Given PT & PS are two tangent drawn from P to circle C(0,2) &OP= 22 To prove = LOTS = LOST = 30° In A OPT, Let 670P = 0 COSO = Base Mypotenuse also cos 60° = 1, then / wimilarily, L50P = 60°, and L50T = 120° In AOST, 2 OTS + LOST + LTOS = 180° Property of A-LOTS+2057 = 180°-2705 LOTS + LOST = 60° Since OT = OS (radius of circle) =) 10TS = 20ST =) LATE = 1220ST = 60° =) 20ST = 30 Hena Proved

0)

7. 30	
8)-	Let A = (3,0); B = (6,4) and C = (-1,3).
1-4-	Applying distance formula - $AB = \sqrt{(6-3)^2 + (4-0)^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ unit}$
	$AB = \sqrt{(6-3)^2 + (4-0)^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ unit}$
	$BC = \sqrt{(6+1)^2+(4-3)^2} = \sqrt{7^2+1^2} = \sqrt{49+1} = \sqrt{50} = 5\sqrt{2} \text{ and}$
	$AC = \sqrt{(3+1)^2+(0-3)^2} = \sqrt{25} = 5 \text{ unid.}$
1	Since,
	AB = AC = Sunit
	DABC is isociles triangle.
	Olso, AB2+AC2= BE
	$= 3 + 5^{2} = .80$ $25 + 25 = 50 = Bc^{2} = (5\sqrt{2})^{2} = 1 AB^{2} + AC^{2} = BC^{2}$
	Hence, by converse of Pythagoras Theorem,
	-) ABC is right angled triangle.
	-1-P-1-Q-1-
9)	we have -
14t	Line AB, joining points (2,-2) (-7,4) A(2,-2) and B(-7,4)
	A(2,-2) and B(-7,4)
10000	

		34
	P& Q arl points of trisection, then, P bividio divides AB in valio 1:2 & Q in ratio 2:1 By section formula -	
5J2 wind	$\chi = \frac{m\chi_1 + n\chi_1}{m + n} \begin{cases} 2\gamma = \frac{m\gamma_2 + n\gamma_1}{m + n} \\ \gamma = \frac{m\gamma_1 + n\gamma_2}{m + n} \end{cases}$ $P(\chi, \gamma) = 1 \times -7 + 2 \times 2 \text{and } \gamma = 1 \times 4 + 2 \times -2$ $3 \qquad \qquad 3$	
	P(x,y) = -7+4 and $4-4$	
Ž.,	$\int P(x,y) = (-1,0)$	
	$P O(x', y') = 2x-7+1x^2$ and $y = 2x4+1x_2$ O(x', y') = -14+2 and $8-2$	
· · · · · · · · · · · · · · · · · · ·	Q(x'y') = (-4, 2)	

			33
	2).	we have-	
		Three consecutive terms of AP = R+9, 2b-1, 2b+7	
		Them I hen,	
X		(k+9)(2k+7) = 2(2k-1) $(a+c=2b)$	
2		=) k+9+2k+7 = 4k-2	
>0	(%)	y = 3k + 16 = 4k - 2	
)=0	3	16+2=4k-3k	
7		118 = k	
0			
	3)	we have-	
		2CAB = 30°	
A		since, OA = OC (radius of circle)	
		20AC = 20CA = 30°	
-	1	Line joining centre to tangent is perpendicular on tange	nt
B		ZOCP = 90"	
. 0		LPCA = LOCP-LOCA	
1		(%) => 90°-30°	
		2/60°	
	11		