

HANDBOOK OF MATHEMATICS

1. **RELATION BETWEEN SYSTEM OF MEASUREMENT OF ANGLES:**

 $\frac{D}{90} = \frac{G}{100} = \frac{2C}{\pi}$

1 Radian = $\frac{180}{\pi}$ degree \approx 57°17'15" (approximately)

1 degree = $\frac{\pi}{180}$ radian ≈ 0.0175 radian

2. **BASIC TRIGONOMETRIC IDENTITIES:**

(a) $\sin^2 \theta + \cos^2 \theta = 1$ or $\sin^2 \theta = 1 - \cos^2 \theta$ or $\cos^2 \theta = 1 - \sin^2 \theta$

- (b) $\sec^2 \theta \tan^2 \theta = 1$ or $\sec^2 \theta = 1 + \tan^2 \theta$ or $\tan^2 \theta = \sec^2 \theta 1$
- (c) If $\sec\theta + \tan\theta = k \implies \sec\theta \tan\theta = \frac{1}{k} \implies 2\sec\theta = k + \frac{1}{k}$
- (d) $\csc^2\theta \cot^2\theta = 1$ or $\csc^2\theta = 1 + \cot^2\theta$ or $\cot^2\theta = \csc^2\theta$ 1
- (e) If $\csc\theta + \cot\theta = k \implies \csc\theta \cot\theta = \frac{1}{k} \implies 2\csc\theta = k + \frac{1}{k}$

3. SIGNS OF TRIGONOMETRIC FUNCTIONS IN DIFFERENT **QUADRANTS:**

 $-1.111...$

Ξ

 $\left\langle \cdot \right\rangle$

(xiii)
$$
\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)
$$

\n(xiv) $\sin C - \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$
\n(xv) $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$
\n(xvi) $\cos C - \cos D = 2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{D-C}{2}\right)$
\n(xvii) $\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2\tan\theta}{1+\tan^2\theta}$
\n(xviii) $\cos 2\theta = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta = \frac{1-\tan^2\theta}{1+\tan^2\theta}$
\n(xix) $1 + \cos 2\theta = 2 \cos^2 \theta \text{ or } \cos \theta = \pm \sqrt{\frac{1+\cos 2\theta}{2}}$
\n(xix) $1 - \cos 2\theta = 2 \sin^2 \theta \text{ or } \sin \theta = \pm \sqrt{\frac{1-\cos 2\theta}{2}}$
\n(xix) $\tan \theta = \frac{1-\cos 2\theta}{\sin 2\theta} = \frac{\sin 2\theta}{1+\cos 2\theta} = \pm \sqrt{\frac{1-\cos 2\theta}{1+\cos 2\theta}}$
\n(xxii) $\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$
\n(xxiii) $\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta$.
\n(xxiv) $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$.
\n(xix) $\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1-3\tan^2\theta}$
\n(xix) $\tan^2 A - \sin^2 B = \sin (A+B) \cdot \sin (A-B) = \cos^2 B - \cos^2 A$

ą

asındı

(xxvii) $\cos^2 A - \sin^2 B = \cos (A+B)$. $\cos (A-B)$.

 $(xxviii) \sin (A + B + C)$ $=$ sin $A\cos B\cos C + \sin B\cos A\cos C + \sin C\cos A\cos B$ $-$ sin AsinBsinC $=\Sigma \sin A \cos B \cos C - \Pi \sin A$ $=$ cosA cosB cosC [tanA + tanB + tanC - tanA tanB tanC] $cos(A + B + C)$ $(xxix)$ $=$ cosA cosB cosC – sinA sinB cosC – sinA cosB sinC $-cosA sinB sinC$ $= \Pi \cos A - \Sigma \sin A \sin B \cos C$ $=$ cosA cosB cosC $[1 - tanA tanB - tanB tanC - tanC tanA]$ $(x\alpha x)$ tan $(A + B + C)$ $=\frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A} = \frac{S_1 - S_3}{1 - S_2}$ (xxxi) $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + ... \sin (\alpha + \overline{n-1} \beta)$ $\frac{\sin \left\{\alpha + \left(\frac{n-1}{2}\beta\right)\}\sin \left(\frac{n\beta}{2}\right)}{-\sin \left(\frac{\beta}{2}\right)}$ (xxxii) $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \dots + \cos(\alpha + \overline{n-1}\beta)$ $\cos\left\{\alpha+\left(\frac{n-1}{2}\right)\beta\right\}\sin\left(\frac{n\beta}{2}\right)$ VALUES OF SOME T-RATIOS FOR ANGLES 18°, 36°, 15°. 22.5°, 67.5° etc. $60518 = \frac{\sqrt{5+5}}{8}$

(a)
$$
\sin 18^\circ = \frac{\sqrt{5} - 1}{4} = \cos 72^\circ = \sin \frac{\pi}{10}
$$

(b)
$$
\cos 36^\circ = \frac{\sqrt{5} + 1}{4} = \sin 54^\circ = \cos \frac{\pi}{5}
$$

(c)
$$
\sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}} = \cos 75^\circ = \sin \frac{\pi}{12}
$$

5

wolet61.2016-171Kota LEEDVAancedVLanderVMaths1ShertVHendoook_MuthsVFormula_Book_(Engl) English.p65

6.

8.

(d) $\cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}} = \sin 75^\circ = \cos \frac{\pi}{12}$ (e) $\tan \frac{\pi}{12} = 2 - \sqrt{3} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \cot \frac{5\pi}{12}$ **(f)** $\tan \frac{5\pi}{12} = 2 + \sqrt{3} = \frac{\sqrt{3} + 1}{\sqrt{2} - 1} = \cot \frac{\pi}{12}$ **(g)** $\tan(225^\circ) = \sqrt{2} - 1 = \cot(67.5^\circ) = \cot \frac{3\pi}{\circ} = \tan \frac{\pi}{\circ}$ **(h)** $\tan(67.5^{\circ}) = \sqrt{2} + 1 = \cot(22.5^{\circ})$ 7. **MAXIMUM & MINlMUM VALUES OF TRIGONOMETRIC EXPRESSIONS: (a)** a cos θ + b sin θ will always lie in the interval $[-\sqrt{a^2+b^2},\sqrt{a^2+b^2}]$ i.e. the maximum and minimum values are $\sqrt{a^2 + b^2}$, $-\sqrt{a^2 + b^2}$ respectively. **(b)** Minimum value of $a^2 \tan^2 \theta + b^2 \cot^2 \theta = 2ab$, where a, $b > 0$ **(a)** a cos θ + b sin θ will always lie in the interval
 $[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}]$ i.e. the maximum and minimum

values are $\sqrt{a^2 + b^2}, -\sqrt{a^2 + b^2}$ respectively.
 (b) Minimum value of $a^2 \tan^2 \theta + b^2 \cot^2 \theta = 2ab$, $\leq \sqrt{a^2 + b^2 + 2ab\cos(\alpha - \beta)}$ where α and β are known angles. (d) Minimum value of $a^2\cos^2\theta + b^2 \sec^2\theta$ is either 2ab or $a^2 + b^2$, if for some real θ equation acos θ = bsec θ is true or not true ${a, b > 0}$ (e) Minimum value of $a^2\sin^2\theta + b^2\cos\theta e^2\theta$ is either 2ab or $a^2 + b^2$, if for some real θ equation asin θ = bcosec θ is true or not true $\begin{bmatrix} a, b > 0 \end{bmatrix}$
IMPORTANT RESULTS: ${a, b > 0}$ **(a)** $\sin \theta \sin (60^\circ - \theta) \sin (60^\circ + \theta) = \frac{1}{4} \sin 3\theta$ $4 \frac{m}{4}$ **(b)** $\cos \theta$. $\cos (60^\circ - \theta) \cos (60^\circ + \theta) = \frac{1}{4} \cos 3\theta$ **(b)** $\cos \theta$. $\cos (60^\circ - \theta) \cos (60^\circ + \theta) = \frac{1}{4} \cos 3\theta$

CAREER INSTITUTE

hs\Formula Book (Engl\English.p6) 80612016-171Kom1.JEEVAd Ē

$$
= \frac{(n-2)}{n} \times 180^{\circ} = \frac{(n-2)}{n} \pi
$$

(c) Sum of exterior angles of a polygon of any number of sides $= 360^{\circ} = 2\pi.$

11Formul
1 **Lader** , ITYKOIS) JEEPAGONESO(L)
.
. • • i \blacksquare

Such an equation is solved by dividing equation by cosⁿx.

reciption 2016-17 Kota LEEIA diaryoota Lebber Mathematical Mathematic Book Gambitabit dos

E

6. IMPORTANT TIPS :

- (a) For equations of the type $\sin \theta = k$ or $\cos \theta = k$, one must check that $|k| < 1$.
- **(b)** Avoid squaring the equations, if possible, because it may lead to extraneous solutions . .
- **(c)** Do not cancel the common variable factor from the two sides of the equations which are in a product because we may loose some solutions.
- **(d)** The answer should not contain such values of e, which make any of the terms undefined or infinite.
- **(e)** Check that denominator is not zero at any stage while solving equations. Check that denominator is not zero at any stage while solving
equations.
 (i) If tan θ or sec θ is involved in the equations, θ should not be

odd multiple of $\frac{\pi}{2}$.
 (ii) If cot θ or cosec θ is inv
- **(f)** (i) If tan θ or sec θ is involved in the equations, θ should not be

odd multiple of $\frac{\pi}{2}$.

(ii) If cot θ or cosec θ is involved in the equation, θ should not be integral multiple of π or 0.

ght English p65 ! Engl J

Santi Lindood, Matallonia
|-
|-

THERE j

016-1711Can | JEENAAmmed | La
|-
|-

- (g) If two different trigonometric ratios such as tan θ and sec θ are involved then after solving we cannot apply the usual formulae for general solution because periodicity of the functions are not same.
- (h) If L.H.S. of the given trigonometric equation is always less than or equal to k and RHS Is always greaier than k, then no solution exists. If both the sides are equal to k for same value of θ , then solution exists and if they are equal for different value of θ , then solution does not exist.

 $\mathbf{P}=\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1}{\mathbf{P}^2}+\frac{1$

(ii) If $\alpha = p + \sqrt{q}$ is one root in this case, (where p is rational $\&$ \sqrt{a} is a surd) then other root will be p - \sqrt{a} . 3. COMMON ROOTS OF TWO QUADRATIC EQUATIONS **(a)** Only one common root. Let α be the common root of $ax^2 + bx + c = 0$ & $ax^2 + bx + c' = 0$ then $a \alpha^2 + b \alpha + c = 0$ & $a' \alpha^2 + b' \alpha + c' = 0$. By Cramer's $\text{Rule } \frac{\alpha^2}{\text{bc}'-\text{b}'\text{c}} = \frac{\alpha}{\text{a}'\text{c}-\text{ac}'} = \frac{1}{\text{ab}'-\text{c}}$ **ca'-c'a** Therefore, $\alpha = \frac{ab - ab}{ab - ab}$ ab'- a'b $bc' - b'c$ **a'e - ac'** So the condition for a common root is $(ca' - c'a)^2 = (ab' - a'b)(bc' - b'c)$ (ca' – c'a)² = (ab' – a'b)(bc'- b'c)
 (b) If both roots are same then $\frac{a}{a} = \frac{b}{b} = \frac{c}{c}$ **4. ROOTS UNDER PARTICUlAR CASES** Let the quadratic equation $ax^2 + bx + c = 0$ has real roots and $(c\text{a}' - c'\text{a})^2 = (\text{ab}' - \text{a'b})(\text{bc}' - \text{b'c})$
 (b) If both roots are same then $\frac{\text{a}}{\text{a}'} = \frac{\text{b}}{\text{b}'} = \frac{\text{c}}{\text{c}'}$
 ROOTS UNDER PARTICULAR CASES

Let the quadratic equation $\text{ax}^2 + \text{bx} + \text{c} = 0$ has real root

(a) If $b = 0 \Rightarrow$ roots are of equal magnitude but of opposite sign **(b)** If $c = 0 \implies$ one roots is zero other is $-b/a$

(c) If $a = c \implies$ roots are reciprocal to each other

- (d) If $\begin{cases} a > 0 & c < 0 \\ a < 0 & c > 0 \end{cases} \Rightarrow$ roots are of opposite signs
- (e) If $\begin{cases} a > 0, b > 0, c > 0 \\ a < 0, b < 0, c < 0 \end{cases} \Rightarrow$ both roots are negative.
- **(f)** If $a > 0, 0 < 0, c > 0$ \Rightarrow both roots are positive. $a < 0, b > 0, c < 0$

(g) If sign of $a = sign of b \neq sign of c$ magnitude is negative, Greater root in

- **(h)** If sign of $b = sign of c \neq sign of a \implies$ magnitude is positive, Greater root in magnitude is positive.
 (i) If $a + b + c = 0 \Rightarrow$ one root is 1 and second root is c/a .
	- **(i)** If $a + b + c = 0 \Rightarrow$ one root is 1 and second root is c/a .

t (EnglisEnglish púb

ghEnglish.p65 **i**: (Enghib) 1 Formula

Lender \

5. **MAXIMUM&MINIMUMVAUJES** OF QUADRATIC EXPRESSION : Maximum & Minimum Values of expression y = $ax^2 + bx + c$ is $\frac{-D}{4a}$ which occurs at $x = - (b/2a)$ according as $a < 0$ or $a > 0$. $y \in \left[\frac{-D}{4a}, \infty\right)$ if $a > 0$ & $y \in \left(-\infty, \frac{-D}{4a}\right]$ if $a < 0$. 6. **LOCATION OF ROOTS:** Let $f(x) = ax^2 + bx + c$, where a, b, $c \in R$, $a \ne 0$ (a) Conditions for both the roots of $f(x) = 0$ to be greater than a specified number 'd' are $D \ge 0$; $a.f(d) > 0$ & $(-b/2a) > d$. $D \geq 0$ (b) Conditions for the both roots of $f(x) = 0$ to lie on either s
the number 'd' in other words the number 'd' lies betwe
roots of $f(x) = 0$ is **a.f(d) < 0**. **(b)** Conditions for the both roots of $f(x) = 0$ to lie on either side of the number 'd' in other words the number 'd' lies between the roots of $f(x) = 0$ is $a.f(d) < 0$. Nathan Sheerl Handbrook, Mathin Lis
. **(c)** Conditions for exactly one root of $f(x) = 0$ to lie in the interval (d,e) i.e .. d < x < e is **f(d). f(e)** < 0 016-17\Koma \JEEIA danneed\La
. d (d) Conditions that both roots of $f(x) = 0$ to be confined between the numbers d & e are (here $d < e$).

 $D \ge 0$; a. f(d) > 0 & af(e) > 0 ; d < (-b/2a) < e

7. **GENERAL QUADRATIC EXPRESSION IN TWO VARIABLES:**

 $f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ may be resolved into two linear factors if:

$$
\Delta = abc + 2fgh - af2 - bg2 - ch2 = 0
$$
 OR
$$
\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0
$$

8. **THEORY OF EQUATIONS:**

If $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n$ are the roots of the equation;

 $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$ where a_0 , a_1 ,......a, are constants $a_n \neq 0$ then,

$$
\Sigma \alpha_1 = -\frac{a_1}{a_0}, \ \Sigma \alpha_1 \alpha_2 = +\frac{a_2}{a_0}, \ \Sigma \alpha_1 \alpha_2 \alpha_3
$$

$$
= -\frac{a_3}{a_0}, \dots, \alpha_1 \alpha_2 \alpha_3, \dots, \alpha_n = (-1)^n \frac{a_n}{a_0}
$$

Note:

(i) Every odd degree equation has at least one real root whose sign is opposite to that of its last term, when coefficient of highest degree term is $(+)$ ve $\{$ If not then make it $(+)$ ve $\}$.

Ex. $x^3 - x^2 + x - 1 = 0$

- (ii) Even degree polynomial whose last term is (-)ve & coefficient of highest degree term is (+)ve has atleast two real roots, one $(+)$ ve & one $(-)$ ve.
- (iii) If equation contains only even power of x & all coefficient are $(+)$ ve, then all roots are imaginary.

1. ARITHMETIC PROGRESSION (AP) :

AP is sequence whose terms increase or decrease by a fixed number. This fixed number is called the **common difference.** If 'a' is the first term & 'd' is the common difference, then AP can be written as $a, a + d, a + 2d, \dots$ $a + (n - 1)d, \dots$

(a) n^{th} term of this AP $\boxed{T_n = a + (n-1)d}$, where $d = T_n - T_{n-1}$

(b) The sum of the first n terms : $\left| S_n = \frac{n}{2} [2a + (n-1)d] = \frac{n}{2} [a + \ell] \right|$ where ℓ is the last term.

(c) Also
$$
n^{th}
$$
 term $T_n = S_n - S_{n-1}$

Note:

ALLE

- **(i)** Sum of first n terms of an A.P. is of the form $An^2 + Bn$ i.e. a quadratic expression in n, in such case the common difference is twice the coefficient of n'. i.e. 2A **c)** Also nth term $\boxed{T_n = S_n - S_{n-1}}$
 lote :
 i) Sum of first n terms of an A.P. is of the form $An^2 + Bn$ i.e quadratic expression in n, in such case the common differe:

is twice the coefficient of n². i.e. 2A
 i)
- (iii) nth term of an A.P. is of the form $An + B$ i.e. a linear expression in n, in such case the coefficient of n is the common difference of the AP. i.e. A
- **(iii)** Three numbers in AP can be taken as $a d$, a , $a + d$; four numbers in AP can be taken as $a - 3d$, $a - d$, $a + d$, $a + 3d$ five numbers in AP are $a - 2d$, $a - d$, a , $a + d$, $a + 2d$ & six terms in AP are $a - 5d$, $a - 3d$, $a - d$, $a + d$, $a + 3d$, $a + 5d$ etc.
- **(iv)** If for A.P. p^{th} term is q, q^{th} term is p, then r^{th} term is $= p + q r$ & $(p + q)^{th}$ term is 0.
- (v) If a_1, a_2, a_3 and b_1, b_2, b_3 are two A.P.s, then $a_1 \pm b_1$, $a_2 \pm b_2$, $a_3 \pm b_3$, are also in A.P.
- (vi) (a) If each term of an A.P. is increased or decreased by the same number, then the resulting sequence is also an A.P. having the same common difference.

(b) If each term of an A.P. is multiplied or divided by the same non zero number (k), then the resulting sequence is also an A.P. whose common difference is kd & d/k respectively. where d is common difference of original A.P.

(vii) Any term of an AP (except the first & last) is equal to half the sum of terms which are equidistant from it.

$$
T_r=\frac{T_{r-k}+T_{r+k}}{2},\ k
$$

2. GEOMETmC PROGRESSION (Gp) :

GP is a sequence of numbers whose first term is non-zero & each of the succeeding terms Is equal to the preceeding terms multiplied by a constant. Thus in a GP the ratio of successive terms Is constant. This constant factor is called the **COMMON RATIO** of the series & is obtained by dividing any term by the immediately previous term. Therefore a , ar , ar^2 , ar^3 , ar^4 , is a GP with 'a' as the first term & 'r' as common ratio. This constant factor is called the **COMMON RATIO** of the s
is obtained by dividing any term by the immediately previou
Therefore a, ar, ar², ar³, ar⁴, is a GP with 'a' as t
term & 'r' as common ratio.
(a)

(a)
$$
n^{th}
$$
 term $T_n = a r^{n-1}$

(b) Sum of the first n terms $S_n = \frac{a(r^n - 1)}{r - 1}$, if $r \neq 1$

(c) Sum of infinite GP when $|r| < 1$ & $n \rightarrow \infty$, $r^n \rightarrow 0$

$$
S_{\infty}=\frac{a}{1-r};\left|r\right|<1
$$

(d) Any 3 consecutive terms of a GP can be taken as a/r, a, ar; any 4 consecutive terms of a GP can be taken as a/r^3 , a/r , ar, ar^3 & so on.

(e) If a, b, c are in $GP \Rightarrow b^2 = ac \Rightarrow loga$, $logb$, $logc$, are in A.P. ar, ar³ & so on.

(e) If a, b, c are in $GP \Rightarrow b^2 = ac \Rightarrow loga$, logb, logc, are in A.P. Note:

- (i) In an G.P. product of k^{th} term from beginning and k^{th} term from the last is always constant which equal to product of first term and last term.
- (ii) Three numbers in **G.P. a** π , **a**, **ar** Five numbers in G.P. \therefore a/r^2 , a/r , a, ar, ar² Four numbers in G.P. : a/r^3 . a/r . ar. ar³ Six numbers in G.P. : a/r^5 , a/r^3 , a/r , ar, ar^3 , ar^5
- (iii) If each term of a **G.P.** be raised to the same power, then resulting series is also a G.P.
- (iv) If each term of a G.P. be multiplied or divided by the same non-zero quantity, then the resulting sequence is also a G.P.
- (v) If a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be two G.P.'s of common ratio r_1 and r_2 respectively, then a_1b_1 , a_2b_2 and $\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}$ will also form a G.P. common ratio will be r_1 r_2 ratio r_1 and r_2 respectively, then a_1b_1 , a_2b_2 a_1b_1 , a_2b_2 a_1b_1 , a_2b_2 a_1b_1 , a_2b_2 a_1
 a_1 , a_2 , a_3 will also form a G.P. common ratio will be a
and
	- and $\frac{r_1}{r_2}$ respectively.
- (vi) In a positive G.P. every term (except first) is equal to square root of product of its two terms which are equidistant from it.

i.e. $T = \sqrt{T_{r-k}T_{r+k}}$, k < r

(vii) If $a_1, a_2, a_3, \ldots, a_n$ is a G.P. of non zero, non negative terms, then $log a_1$, $log a_2$, $log a_n$ is an A.P. and vice-versa.

3. HARMONIC PROGRESSION (HP) :

A sequence is said to HP if the reciprocals of its terms are in AP.

If the sequence a_1 , a_2 , a_3 ,, a is an HP then $1/a_1$, $1/a_2$,, $1/a_n$ is an AP & converse. Here we do not have the formula for the sum of the n terms of an HP. The general form of a

harmonic progression is $\frac{1}{a}$, $\frac{1}{a+d}$, $\frac{1}{a+2d}$,......... $\frac{1}{a+(n-1)d}$

Note: No term of any H.P. can be zero. If a, b, c are in

$$
HP \Rightarrow b = \frac{2ac}{a+c} \text{ or } \frac{a}{c} = \frac{a-b}{b-c}
$$

c

Book EngliEngleh.pd

ITomula

11-landboo **ISheen** Maths Leader¹

VKota V.IEE(Advanced VL

~

4. MEANS

(a) Arithmetic mean (AM) :

If three terms are in AP then the middle term is called the **AM** between the other two. so if a. b. c are in AP. b is **AM** of a & c.

n-arithmetic means between two numbers:

If a,b are any two given numbers & a, A_1 , A_2 ,, A_n , b are in AP then A_1 , A_2 , A_n are the n AM's between a & b, then

 $b-a$ $A_1 = a + d$, $A_2 = a + 2d$,......, $A_n = a + nd$, where $d = \frac{a}{n+1}$

Note: Sum of n AM's inserted between a & b is equal to n times

the single AM between a & b i.e. $\sum_{r=1}^{n} A_r = nA$ where A is the **(=1**

single **AM** between a & b.

(b) Geometric mean (GM) :

If a, b, c are in GP, b is the GM between a & c, $b^2 = ac$, therefore $b = \sqrt{ac}$ single AM between a & b.
 (b) Geometric mean (GM):

If a, b, c are in GP, b is the GM between a & c, b

therefore $b = \sqrt{ac}$
 n-geometric means between two numbers:

If a, b are two given positive numbers & a, G₁, G

n-geometric means between two numbers :

If a, b are two given positive numbers & a, G_1, G_2, \ldots, G_n , b are in GP then $G_1, G_2, G_3, \ldots, G_n$ are n GMs between a & b. $G_1 = ar, G_2 = ar^2, \dots \dots G_n = ar^n$, where $r = (b/a)^{1/n+1}$ **Note:** The product of n GMs between a & b is equal to nth

power of the single GM between a & b i.e. $\prod_{r=1}^{n} G_r = (G)^n$ where G is the single GM between a & b

(c) Harmonic mean (HM) :

If a, b, c are in HP, then b is HM between a & c, then $b = \frac{2ac}{a+c}$.

Important note :

(i) If A, G, H, are respectively AM, GM, HM between two positive number a & b then number a & b then

- (a) $G^2 = AH$ (A, G, H constitute a GP) $\langle b \rangle$ $A \ge G \ge H$ (c) $A = G = H \Rightarrow a = b$
- (ii) Let a_1, a_2, \ldots, a_n be n positive real numbers, then we define their arithmetic mean (A), geometric mean (G) and harmonic

mean (H) as A =
$$
\frac{a_1 + a_2 + \dots + a_n}{n}
$$

$$
G = (a_1 a_2 \dots a_n)^{1/n} \text{ and } H = \frac{n}{\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n}\right)}
$$

It can be shown that $A \ge G \ge H$. Moreover equality holds at either place if and only if $a_1 = a_2 = \dots = a_n$

5. **ARITHMETICO - GEOMETRIC SERIES:**

Sum of First n terms of an Arithmetico-Geometric Series :

Let
$$
S_n = a + (a + d)r + (a + 2d)r^2 + \dots + [a + (n-1)d]r^{n-1}
$$

then
$$
S_n = \frac{a}{1-r} + \frac{dr(1-r^{n-1})}{(1-r)^2} - \frac{[a+(n-1)d] \ r^n}{1-r}, \ r \neq 1
$$

Sum to infinity:

If $|r| < 1$ & $n \to \infty$ then $\lim_{n \to \infty} r^n = 0 \Rightarrow S_\infty = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$

SIGMA NOTATIONS 6.

Theorems:

(a)
$$
\sum_{r=1}^{n} (a_r \pm b_r) = \sum_{r=1}^{n} a_r \pm \sum_{r=1}^{n} b_r
$$
 (b) $\sum_{r=1}^{n} k a_r = k \sum_{r=1}^{n} a_r$

(c)
$$
\sum_{r=1}^{n} k = nk
$$
; where k is a constant.

1. FUNDAMENTAL PRINCIPLE OF COUNTING (counting without actually counting):

If an event can occur in 'm' different ways, following which another event can occur in 'n' different ways, then the total number of different ways of

- **(a)** Simultaneous occurrence of both events in a definite order is m x n. This can be extended to any number of events (known as multiplication principle).
- **(b)** Happening of exactly one of the events is $m + n$ (known as addition principle).

2. FACTORIAL :

A Useful Notation: $n! = n(n-1)(n-2)$ 3. 2. 1;

 $n! = n$. (n - 1)! where $n \in W$

 $0! = 1! = 1$

 $(2n)! = 2^n$. n! [1, 3, 5, 7.........(2n - 1)]

Note that factorials of negative integers are not defined. addition principle).

FACTORIAL:

A Useful Notation : $n! = n(n-1)(n-2)$ 3. 2. 1;
 $n! = n. (n-1)!$ where $n \in W$
 $0! = 1! = 1$
 $(2n)! = 2^n$. $n!$ [1. 3. 5. 7.........($2n - 1$)]

Note that factorials of negative integers are

3. **PERMUTATION:**

(a) ⁿP_r denotes the number of permutations of n different things, taken r at a time $(n \in N, r \in W, n \ge r)$

$$
{}^{n}P_{r} = n (n-1) (n-2) \dots (n-r+1) = \frac{n!}{(n-r)!}
$$

! **(b)** The number of permutations of n things taken all at a time when p of them are similar of one type, q of them are similar of second type, r of them are similar of third type and the remaining

 $n - (p + q + r)$ are all different is: $\frac{n!}{p! \cdot q! \cdot r!}$

;; **(c)** The number of permutation of n different objects taken r at a time, when a particular object is always to be included is -1

- **(d)** The number of pennutation of n different objects taken r at a time, when repetition be allowed any number of times is n x n x **n r times = nr,**
- **(e) (i)** The number of circular permutations of n different things taken all at a time is ; $(n-1)! = \frac{{}^{n}P_{n}}{{}^{n}}$.

If clockwise & anti-clockwise circular permutations are considered to be same, then it is $\frac{(n-1)!}{2}$.

(ii) The number of circular permutation of n different things taking r at a time distinguishing clockwise & anticlockwise

arrangement is $\frac{{}^{n}P_{r}}{r}$

4. COMBINATION:

(a) ⁿC_r denotes the number of combinations of n different things

taken **r** at a time, and ${}^nC_r = \frac{n!}{r!(n-r)!} = \frac{{}^nP_r}{{}^r}$ where $r \le n$; $n \in$ **COMBINATION :**
 (a) ⁿC_r denotes the number of combinations of n different the taken r at a time, and ⁿC_r = $\frac{n!}{r!(n-r)!} = \frac{{}^nP_r}{r!}$ where r \leq n N and r \in W. ⁿC_r is also denoted by $\binom{n}{r}$ or A_r^n

N and $r \in W$. ⁿC_r is also denoted by $\binom{n}{r}$ or A_r^n or C (n, r).

- **(h)** The number of combination of n different things taking r at a time.
	- (i) when p particular things are always to be included = $n pC_{r-p}$
	- (ii) when p particular things are always to be excluded = $n pC$.
	- (iii) when p particular things are always to be included and q particular things are to be excluded = $n - p - qC_{r-p}$
- **(e)** Given n different objects , the number of ways of selecting atleast one of them is, ${}^nC_1 + {}^nC_2 + {}^nC_3 + \dots + {}^nC_n = 2^n - 1$. This can also be stated as the total number of combinations of n distinct things.

1
Book Maris (Formula I EN

0 : Leone : 1 Mail of Short Handbook

Manuel

E

(ii) If $m = n$, it means the groups are equal & in this case the

number of subdivision is $\frac{2\pi i}{\pi}$; for in any one way it is n! n!

possible to inter change the two groups without obtaining a new distribution.

(ill) If 2n things are to be divided equally between two persons

then the number of ways = $\frac{(2n)!}{n! \cdot n! \cdot (2n)} \times 2!$.

(b) (i) Number of ways in which $(m + n + p)$ different things can be divided into three groups containing m, n & p things

respectively is $\frac{(m+n+p)!}{m! n! p!}$, $m \neq n \neq p$.

(ii) If m = n = p then the number of groups = $\frac{(3n)!}{n! \; n! \; n! \; 3!}$. respectively is $\frac{(m+n+p)!}{m! n! p!}$, $m \neq n \neq p$.

(ii) If $m = n = p$ then the number of groups $= \frac{(3n)!}{n! n! n! 3!}$.

(iii) If 3n things are to be divided equally among three people then the number of ways in which it can be

(ill) If 3n things are to be divided equally among three people

(c) In general, the number of ways of dividing n distinct objects into J ℓ groups containing p objects each ,m groups containing q objects

each is equal to $\frac{n! (\ell + m)!}{(p!)' (q!)^m \ell! m!}$

Here $\ell p + mq = n$

- **(d)** Number of ways in which n distinct things can be distributed to j p persons if there is no restriction to the number of things received
by them = p^n
- (e) Number of ways in which n identical things may be distributed among p persons if each person may receive none, one or more things is ; $n+p-1C_n$.

7. DEARRANGEMENT:

'Number of ways in which n letters can be placed in n directed envelopes so that no letter goes into its own envelope is

$$
= n! \left[1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^n \frac{1}{n!} \right]
$$

8. · IMPORTANT RESULT:

(a) Number of rectangle of any size in a square of size n x n is

$$
\sum_{r=1}^{n} r^3
$$
 & number of square of any size is $\sum_{r=1}^{n} r^2$.

(b) Number of rectangle of any size in a rectangle of size $n \times p$

(n < p) is $\frac{np}{4}(n+1)(p+1)$ & number of squares of any size is
 $\sum_{r=1}^{n} (n+1-r)(p+1-r)$

(c) If there are n points in a plane of which m(<n) are collinear :

(i) Total number of lines obtained by joining these points is

$$
\sum_{r=1}^{n} (n+1-r)(p+1-r)
$$

 (c) If there are n points in a plane of which $m(< n)$ are collinear :

- **(I)** Total number of lines obtained by Joining these points is ${}^nC_2 - {}^mC_2 + 1$
- (ii) Total number of different triangle ${}^nC_3 {}^mC_3$
- (d) Maximum number of point of intersection of n circles is ${}^{n}P_{2}$ & n lines is nC_2 .

3. SOME RESULTS ON BINOMIAL COEFFICIENTS : (a) ${}^nC_x = {}^nC_x$ \Rightarrow $x = y$ or $x + y = n$ (b) ${}^{n}C_{n+1} + {}^{n}C_{n} = {}^{n+1}C_{n}$ (c) $C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}$ **(d)** $C_0 - \frac{C_1}{s} + \frac{C_2}{s} - \frac{C_3}{s} + \frac{(-1)^n C_n}{s} = \frac{1}{s}$ $2 \t3 \t4 \t n+1 \t n+1$ (e) $C_0 + C_1 + C_2 + \dots = C_n = 2^n$ **(f)** $C_n + C_n + C_n + \ldots = C_1 + C_n + C_5 + \ldots = 2^{n-1}$ (g) $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n = \frac{(2n)!}{n!n!}$

(h) $C_0.C_r + C_1.C_{r+1} + C_2.C_{r+2} + \dots + C_n.C_n = \frac{(2n)!}{(n+r)!(n-r)!}$

Remember : $(2n)! = 2^n$. n! $[1.3.5 \dots, (2n-1)]$ **(g)** $C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2 = {}^{2n}C_n = \frac{(2n)!}{n!n!}$ (2n)! **(h)** $C_0.C_r + C_1.C_{r+1} + C_2.C_{r+2} + \dots + C_n.C_n = \frac{n+r}{(n+r)(n-r)!}$ **Remember** : $(2n)! = 2^n$. n! $[1.3.5$ $(2n-1)!$ **Greatest coefficient & greatest term in expansion of** $(x + a)^n$ **: 4.** (a) If n is even greatest coefficient is ${}^nC_{n/2}$ If n is odd greatest coefficient is ${}^{n}C_{\frac{n-1}{2}}$ or ${}^{n}C_{\frac{n+1}{2}}$ **(h) For greatest term : 1** is an integer $\mathbf{I}_{\mathrm{p}} \propto \mathbf{I}_{\mathrm{p+1}}$ if $\frac{1}{|\mathbf{x}|}$ $\frac{4}{a}$ + 1 Greatest term $=$ \leq **1** if $\overline{1.1}$ is non integer and \in $(q, q + 1)$, $q \in I$ $\frac{1}{a}$ $+1$

6.

5. **RINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES:**

If $n \in Q$, then $(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{2!}x^3$ $+$ ∞ provided $|x| < 1$. Note: (i) $(1-x)^{-1} = 1 + x + x^2 + x^3 + \cdots$ or (ii) $(1 + x)^{-1} = 1 - x + x^2 - x^3 + \dots \dots \dots \infty$ (iii) $(1-x)^{-2} = 1 + 2x + 3x^2 + 4x^3 + \dots$ ∞ (iv) $(1 + x)^{-2} = 1 - 2x + 3x^{2} - 4x^{3} + \dots$ ∞ **EXPONENTIAL SERIES:**

(a) $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$; where x may be any real or complex number & $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ **(b)** $a^x = 1 + \frac{x}{1!}lna + \frac{x^2}{2!}ln^2a + \frac{x^3}{2!}ln^3a + \dots \infty$, where $a > 0$.

7. **LOGARITHMIC SERIES:**

- (a) $ln(1 + x) = x \frac{x^2}{2} + \frac{x^3}{2} \frac{x^4}{4} + \dots \infty$, where $-1 < x \le 1$
- **(b)** $ln(1-x) = -x \frac{x^2}{2} \frac{x^3}{3} \frac{x^4}{4} \dots \infty$, where $-1 \le x < 1$

(c)
$$
\ln \frac{(1+x)}{(1-x)} = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots \infty \right) |x| < 1
$$

3. REPRESENTATION OF A COMPLEX NUMBER IN VARIOUS FORMS:

(a) Cartesian Form (Geometrical Representation):

Every complex number $z = x + iy$ can be represented by a point on the cartesian plane known as complex plane (Argand diagram) by the ordered pair (x, y) . Length OP is called **modulus** of the complex number denoted by $|z|$ & θ is called the **argument or amplitude .**

 $e.g. |z| = \sqrt{x^2 + y^2} \& \theta = \tan^{-1} \frac{y}{x}$ (angle made by OP with positive x-axis)

Geometrically $|z|$ represents the distance of point P from origin. $|z| \geq 0$ e.g. $|z| = \sqrt{x^2 + y^2}$ & $\theta = \tan^{-1} \frac{y}{x}$ (angle made by O
positive x-axis)
Geometrically $|z|$ represents the distance of point P from
 $(|z| \ge 0)$
(b) Trigonometric / Polar Representation :
 $z = r(\cos \theta + i \sin \theta)$ where $|z| = r$

(b) Trigonometric / Polar Representation :

 $z=r(\cos\theta+i\sin\theta)$ where $|z|=r$; arg $z=\theta$; $\bar{z}=r(\cos\theta-i\sin\theta)$ **Note** : $\cos \theta + i \sin \theta$ is also written as CiS θ .

Euler's formula:

The formula $e^w = \cos x + i \sin x$ is called Euler's formula.

 $e^{ix} + e^{-ix}$ Also $\cos x = \frac{0.00 \text{ m/s}}{2}$ & $\sin x = \frac{0.000 \text{ m}}{2i}$ are known as Euler's identities.

(c) Exponential Representation :

Let z be a complex number such that $|z| = r \& arg z = \theta$, then $z = r.e^{i\theta}$

4. IMPORTANT PROPERTIES OF CONJUGATE :

(a) $(\overline{z}) = z$ **(b)** $z_1 + z_2 = \overline{z}_1 + \overline{z}$, **(c)** $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$ **(d)** $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$ **(e)** $\left(\frac{z_1}{z_2}\right) = \frac{\overline{z_1}}{\overline{z_2}}$; $z_2 \neq 0$ **(f)** If $f(\alpha+i\beta) = x + iy \Rightarrow f(\alpha-i\beta) = x - iy$ ALLEN **Mathematics Handbook IMPORTANT PROPERTIES OF MODULUS:** (a) $|z| \ge 0$ **(b)** $|z| \geq Re(z)$ **(c)** $|z| \geq Im(z)$ **(d)** $|z| = |\overline{z}| = |-z| = |- \overline{z}|$ **(e)** $z \overline{z} = |z|^2$ **(f)** $|z, z_2| = |z_1| |z_2|$ (g) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, z_2 \neq 0$ (h) $|z^n| = |z|^n$ (i) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1 \overline{z}_2)$

or $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2| \cos(\theta_1 - \theta_2)$ **(i)** $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 \left[|z_1|^2 + |z_2|^2 \right]$ (k) $\left| \begin{array}{c} |z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2| \end{array} \right|$ [Triangle Inequality] **(1)** $||z_1|-|z_2|| \leq |z_1-z_2| \leq |z_1|+|z_2|$ [Triangle Inequality] (**m)** If $|z + \frac{1}{z}| = 0$ (a > 0), then max $|z| = \frac{a + \sqrt{a^2 + 4}}{2}$ & min $|z| = \frac{1}{2}(\sqrt{a^2 + 4} - a)$

IMPORTANT PROPERTIES OF AMPLITUDE: 6.

(a) amp (z_1, z_2) = amp z_1 + amp z_2 + 2 k π ; k \in 1

- **(b)** amp $\left(\frac{z_1}{z}\right)$ = amp z_1 amp z_2 + 2 k π ; k \in 1
- (c) amp(zⁿ) = n amp(z) + $2k\pi$, where proper value of k must be chosen so that RHS lies in $[-\pi, \pi]$.
- (d) $log(z) = log(re^{i\theta}) = logr + i\theta = log|z| + i amp(z)$

7. **DE'MOIVER'S THEOREM:**

The value of $(cos\theta + isin\theta)^n$ is $cosn\theta + isinn\theta$ if 'n' is integer & it is one of the values of $(cos\theta + isin\theta)^n$ if n is a rational number of the form p/

q, where $p \& q$ are co-prime.

Note: Continued product of roots of a complex quantity should be determined using theory of equation.

5.

amond Casoler (Maths) Sheet (Handbook, Maths) Formula Book (Eng) (English, p6

ode0612016-171Kota1JEEPAd

(a) Circle whose centre is z_0 & radii = r

 $|z - z_0| = r$

Book (Engl\Engleh.p65

1\Formule

ikezi Handbook_Masha\ Fi

Made / Sheet Leader

6\2016-17\Kou\JEE(Adamed\\A

DETERMINANT

1. MINORS:

The minor of a given element of determinant is the determinant of the elements which remain after deleting the row & the column in which the given element stands.

For example, the minor of
$$
a_1
$$
 in $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ is $\begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix}$ & the

minor of b_2 is $\begin{vmatrix} a_3 \end{vmatrix}$ \mathbb{E} c_3

Hence a determinant of order three will have" 9 minors".

2. COFACTORS :

If M_u represents the minor of the element belonging to ith row and jth column then the cofactor of that element : $C_n = (-1)^{i+j}$. M_{ij} ; Tence a determinant of order three will have \rightarrow 9 minors.

COFACTORS :

SUGENTORS :

SUGENTURE STUDY of the element belonging to ith row and

bumn then the cofactor of that element : C_y = (-1)¹⁺¹. M_y ;
 mportan

Important Note:

Consider
$$
\Delta = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}
$$

Let A_1 , be cofactor of a_1 , B_2 , be cofactor of b_2 and so on, then,

- **(i)** $a_1A_1 + b_1B_1 + c_1C_1 = a_1A_1 + a_2A_2 + a_3A_3 = \dots \dots \dots \dots = \Delta$
- **(iI)** a,AI + b,B, + c,CI = blAI + b,A, + b3A3 = = 0

3. **PROPERTIES OF DETERMINANfS:**

- **(a)** The value of a determinants remains unaltered, if the rows & columns are interchanged.
- **(b)** If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g.

Let
$$
D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}
$$
 & $E = \begin{vmatrix} a_2 & b_2 & c_2 \\ a_1 & b_1 & c_1 \\ a_3 & b_3 & c_3 \end{vmatrix}$

- (c) If a determinant has any two rows (or columns) identical or in same proportion, then its value is zero.
- **(eI)** If all the elements of any row (or columns) be multiplied by the same number, then the determinant is multiplied by that number.

^a1 + x b, + y c, + z a, b,c,xyz **(e)** ^a 2 b2 c2 = a2 b2 c2 +a2 b2 C2 a3 b3 c3 a3 b3 c3 a3 b3 c3

(f) The value of a determinant is not altered by adding to the elements of any row (or column) the same multiples of the corresponding elements of any other row (or column) e.g.

Let
$$
D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}
$$

Let
$$
D = \begin{vmatrix} a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{vmatrix}
$$

$$
D' = \begin{vmatrix} a_1 + ma_2 & b_1 + mb_2 & c_1 + mc_2 \ a_2 & b_2 & c_2 \ a_3 + na_1 & b_3 + nb_1 & c_3 + nc_1 \end{vmatrix}
$$
. Then $D' = D$.
Note: While applying this property ATLEAST ONE Row

Note: While applying this property **ATI.EAST ONE ROW (OR COLUMN)** must remain unchanged.

(a) If the elements of a determinant Δ are rational function of x and two rows (or columns) become identical when $x = a$, then x $-$ a is a factor of Δ .

Again, if r rows become identical when a is substituted for x, then $(x - a)^{r-1}$ is a factor of Δ .

(h) If
$$
D(x) = \begin{vmatrix} f_1 & f_2 & f_3 \ g_1 & g_2 & g_3 \ h_1 & h_2 & h_3 \end{vmatrix}
$$
, where f_r , g_r , h_r ; $r = 1, 2, 3$ are three

differential function .

f'₁ f'₂ f'₃ $|f_1 f_2 f_3|$ $|f_1 f_2 f_3|$ f₃ $\begin{bmatrix} f'_1 & f'_2 \\ g'_2 & g'_3 \end{bmatrix}$ then $\frac{d}{dx}D(x) = \begin{vmatrix} g_1 & g_2 & g_3 \end{vmatrix} + \begin{vmatrix} g'_1 & g'_2 & g'_3 \end{vmatrix} + \begin{vmatrix} g_1 & g_2 & g_3 \end{vmatrix}$ h_1 h_2 h_3 h_1 h_2 h_3 h'_1 h'_2 h'_3

 $\fbox{Model 2016-17-Kan MEMonized (Leodei) (Wain) Sheer (Hordroce) (Wain) Concoie Bron, E-gil) (Eqde, pds.$

Book (Engli English.pES

i

stFormule

ezt) Handbook_Matha\Fi

ISheet Vieths Jackery

RandEEM chang

2016-17\Kota\J

(System has infinite solutions)

Note:

, Book (Engl\English.p65

Formula

l Handboo
J 1Sherl Mattell. j
Martin
M

an i EE (Adamad 1).
I

! $^{\frac{1}{2016}}$ rede0612

- **(I) Trivial solution: In** the solution set of system of equation if all the variables assumes zero, then such a solution set is called Trivial solution otherwise the solution is called non-trivial solution.
- (ii) If $d_1 = d_2 = d_3 = 0$ then system of linear equation is known as system of Homogeneous linear equation which always posses atleast one solution (0, 0, 0).
- (iii) If system of homogeneous linear equation posses non-zero/nontrivial solution then $\Delta = 0$.

 $\frac{1}{2}$ In such case given system has infinite solutions.

(i) The pair of elements a_{ij} & a_{ji} are called Conjugate Elements.
 (ii) The elements a_{11} , a_{22} , a_{33} ,...... a_{nn} are called Diagonal

Elements. The line along which the diagonal elements

lie is call (ii) The elements a_{11} , a_{22} , a_{33} ,....... a_{nn} are called Diagonal Elements. The line along which the diagonal elements lie is called "Principal or Leading diagonal. "The quantity Σa_{ii} = trace of the matrix written as, t_r (A) $\left.\begin{array}{c} \n\end{array}\right\}$ $\begin{array}{c} \n\frac{3}{5} \\
\end{array}$

!

6. **MUL TIPUCATION OF A MATRIX BY A SCAlAR** :

7. **MUL TIPUCATION OF MATRICES (Row by Column)** :

Let A be a matrix of order $m \times n$ and B be a matrix of order $p \times q$ then the matrix multiplication AB is possible if and only if $n = p$.

Let $A_{m \times n} = [a_{ij}]$ and $B_{n \times n} = [b_{ij}]$, then order of AB is m $\times p$

$$
\& \left| \left(AB \right)_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj} \right|
$$

8. CHARACTERISTIC EQUATION:

Let A be a square matrix. Then the polynomial $|A - x|$ is called as characteristic polynomial of A & the equation $|A - xI| = 0$ is called characteristic equation of A. **HARACTERISTIC EQUATION :**

et A be a square matrix. Then the polynomial $|A - xI|$ is called

aracteristic polynomial of A & the equation $|A - xI| = 0$ is call

aracteristic equation of A.
 AYLEY - HAMILTON THEOREM :

ery

9. **CAYLEY· HAMILTON THEOREM** :

Every square matrix A satisfy its characteristic equation **i.e.** $a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n = 0$ is the characteristic equation of matrix A, then $a_0A^n + a_1A^{n-1} + \dots + a_{n-1}A + a_nI = 0$

10. PROPERTIES OF MATRIX MULTIPLICATION : \int_{3}^{8} **PROPERTIES OF MATRIX MULTIPLICATION :**
(a) $AB = 0 \nleftrightarrow A = 0$ or $B = 0$ (in general)

Note: If $\frac{1}{2}$

If A and B are two non-zero matrices such that $AB = O$, then A and B are called the divisors of zero. If A and B are two matrices such that \mathbb{I}

 (i) $AB = BA$ then A and B are said to commute

 (ii) $AB = -BA$ then A and B are said to anticommute

(b) Matrix MultipHcation Is Associative : [~]

If A , $B \& C$ are conformable for the product $AB \& BC$, then $(AB)C = A(BC)$, $(AB)C = A(BC)$ ~------------~~~----------____ ~E **⁴⁴**

(c) Distrlbutivity:

 $A(B+C) = AB + AC$
(A + B)C = AC + BC Provided A,B & C are conformable for

respective products

11. POSITIVE INTEGRAL POWERS OF A SQUARE MATRIX :

- (a) $A^m A^n = A^{m+n}$
- **(b)** $(A^m)^n = A^{mn} = (A^n)^m$
- **(c)** $I^m = I$ m, $n \in N$

12. ORTHOGONAL MATRIX

A square matrix is said to be orthogonal matrix if $A A^{T} = I$

Note :

rode061201

- (i) The determinant value of orthogonal matrix is either 1 or -1 . Hence orthogonal matrix is always invertible **Note :**

(i) The determinant value of orthogonal matrix is either 1

Hence orthogonal matrix is always invertible

(ii) $AA^T = I = A^TA$ Hence $A^{-1} = A^T$.
 SOME SQUARE MATRICES :

(a) **Idempotent Matrix :** A square matrix i
	- **(ii)** $AA^T = I = A^T A$ Hence $A^{-1} = A^T$.

13. SOME SQUARE MATRICES :

(a) Idempotent Matrix: A square matrix is idempotent provided $A^2 = A$.

For idempotent matrix note the following:

(i) $A^n = A \; \forall \; n \geq 2, n \in N$.

(ii) determinant value of idempotent matrix is either 0 or 1

(iii) If idempotent matrix is invertible then its inverse will be identity matrix i.e. I.

(b) Periodic Matrix: A square matrix which satisfies the relation $A^{k+1} = A$, for some positive integer K, is a periodic matrix. The period of the matrix is the least value of K for which this holds true.

Note that period of an idempotent matrix is 1. F

(a) Symmetric matrix :

Note: Maximum number of distinct entries in any symmetric

matrix of order n is $\frac{n(n+1)}{2}$.
 (b) Skew symmetric matrix :

For symmetric matrix $A = A^T$.
 Note : Maximum number of distinct entries in any symmetric

matrix of order n is $\frac{n(n+1)}{2}$.
 Skew symmetric matrix :

Square matrix $A = [a_{ij}]$ is said to be skew symmetric if
 $a_{ij} = -a$ Square matrix $A = [a_{ij}]$ is said to be skew symmetric if $a_n = -a_n \forall i \& j$. Hence if A is skew symmetric, then $a_{ii} = -a_{ii} \implies a_{ii} = 0 \forall i.$

Thus the diagonal elements of a skew square matrix are all zero, but not the converse.

For a skew symmetric matrix $A = -A^T$.

- **(c) Properties of symmetric & skew symmetric matrix:**
	- **(i)** Let A be any square matrix then, $A + A^T$ is a symmetric matrix & $A - A^T$ is a skew symmetric matrix.
	- **(ii)** The sum of two symmetric matrix is a symmetric matrix and the sum of two skew symmetric matrix is a skew symmetric matrix.
	- **(iii)** If A & B are symmetric matrices then.
		- (1) AB + BA is a symmetric matrix
		- (2) AB BA is a skew symmetric matrix.
	- **(iv)** Every square matrix can be uniquely expressed as a sum or difference of a symmetric and a skew symmetric matrix. (2) AB – BA is a skew symmetric matrix.

	(iv) Every square matrix can be uniquely expressed as a sum

	difference of a symmetric and a skew symmetric matrix
 $A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$

	symmetric skew symmetric

$$
A = \frac{1}{2} (A + A^{T}) + \frac{1}{2} (A - A^{T})
$$

symmetric
skew symmetric

and
$$
A = \frac{1}{2}(A^{T} + A) - \frac{1}{2}(A^{T} - A)
$$

16. ADJOINT OF A SOUARE MATRIX :

 $\begin{pmatrix} a_{11} & a_{12} & a_{13} \end{pmatrix}$ Let $A = [a_{ij}] = \begin{vmatrix} a_{21} & a_{22} & a_{23} \end{vmatrix}$ be a square matrix and let the **3 31 3 32 3 33**

matrix formed by the cofactors of $[a_{ij}]$ in determinant $|A|$ is

$$
\begin{pmatrix} C_{11} & C_{12} & C_{13} \ C_{21} & C_{22} & C_{23} \ C_{31} & C_{32} & C_{33} \end{pmatrix}
$$
. Then (adj A) =
$$
\begin{pmatrix} C_{11} & C_{21} & C_{31} \ C_{12} & C_{22} & C_{32} \ C_{13} & C_{23} & C_{33} \end{pmatrix}
$$

47

J\English.p !

Sheet'i Handbook_Maths\Formula_Book

ir \ Maths\Sheet\| Leader¹

:;

Note:

If A be a square matrix of order n, then

(i) $A(\text{adj } A) = |A| |I| = (ad \, A) \cdot A$

(ii) $| \text{adi } A | = |A|^{n-1}$

(iii) $adj(adj A) = |A|^{n-2} A$

(iv) $| \text{adj}(\text{adj } A)| = |A|^{(n-1)^2}$

 (v) adj $(AB) = (adj B) (adj A)$

(vi) $\text{adj}(KA) = K^{n-1} (\text{adj } A)$, where K is a scalar

17. INVERSE OF A MATRIX (Reciprocal Matrix) :

A square matrix A said to be invertible (non singular) if there exists a matrix B such that, $AB = I = BA$ B is called the inverse (reciprocal) of A and is denoted by A^{-1} . Thus a matrix B such that, $AB = I = BA$

B is called the inverse (reciprocal) of A and is denoted by A⁻¹
 $A^{-1} = B \Leftrightarrow AB = I = BA$

We have, A.(adj A) = A ¹ I_n 1 A 1
 A^{-1} . A(adj A) = A⁻¹ I_n 1 A 1

I_n (adj A) = A⁻¹ 1 A 1

 $A^{-1} = B \Leftrightarrow AB = I = BA$

We have, $A.(adj A) = |A| |I_n|$

 A^{-1} . A(adj A) = A^{-1} I, IA I

 I_n (adj A) = A^{-1} | A | I_n

 \therefore A⁻¹ = $\frac{\text{(adj A)}}{}$ IAI

Note: The necessary and sufficient condition for a square matrix A to be invertible is that $|A| \neq 0$

Theorem: If A & B are invertible matrices of the same order, then

 $(AB)^{-1} = B^{-1}A^{-1}$.

Note:

<u>#</u>

(i) If A be an invertible matrix, then A^T is also invertible & $(A^T)^{-1} = (A^{-1})^T$.

(ii) If A is invertible , (a) $(A^{-1})^{-1} = A$

(b)
$$
(A^k)^{-1} = (A^{-1})^k = A^{-k}; k \in N
$$

j\English.pE ! <u>1</u> 1Formula
1

Lander)

5-ITV Notel LEEKAdverwat (Le

• • i

18. SYSTEM OF EQUATION & **CRfTERIA FOR CONSISTENCY Gauss - Jordan method: Example:** $a_1x + b_1y + c_1z = d$ $a_2x + b_2y + c_2z = d$ $a_2x + b_2y + c_2z = d$ $\Rightarrow \begin{bmatrix} a_1x + b_1y + c_1z \\ a_2x + b_2y + c_2z \\ a_3x + b_3y + c_3z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \Rightarrow \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$ \Rightarrow A X = B \Rightarrow A⁻¹AX = A⁻¹B ⇒ $X = A^{-1} B = \frac{Adj A}{|A|}$.
 Note :
 (i) If $|A| \ne 0$, system is consistent having unique solution
 (ii) If $|A| \ne 0$ & (adj A) . B $\ne 0$ (Null matrix), system is consistent having unique non-trivial solution.
 (iii) \Rightarrow X = A⁻¹ B = $\frac{Adj A}{AB}$ B IAI **Note: (i)** If $|A| \neq 0$, system is consistent having unique solution (ii) If $|A| \neq 0$ & (adj A) . B \neq O(Null matrix), system is consistent having unique non-trivial solution. (iii) If $|A| \neq 0$ & (adj A) . B = 0 (Null matrix), system is consistent having trivial solution. (iv) If $| A | = 0$, then **matrix method fails** Masher), Shwari i Handbook, Maltis i Fo
. **I I** If $(ad \, \mathrm{i} \, A)$. $B = O \, (\text{null matrix})$ If $(ad \, \mathrm{i} \, A)$. $B \neq O$

~ Consistent (infinite solutions)

$b^2 + c^2 - a^2$ (a) $\cos A = \frac{2b}{\cosh A}$ or $a^2 = b^2 + c^2 - 2bc \cos A$ **(b)** $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ $a^2 + b^2 - c^2$ **(c)** $\cos C = \frac{2ab}{a}$ (a) $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ or $a^2 = b^2 + c^2 - 2bc \cos A$

(b) $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$

(c) $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

PROJECTION FORMULAE :

3. PROJECTION FORMUlAE :

(a) $b \cos C + c \cos B = a$

(b) $\cos A + a \cos C = b$

(c) $a \cos B + b \cos A = c$

4. NAPIER'S ANALOGY (fANGENT RULE) : •

(a)
$$
\tan\left(\frac{B-C}{2}\right) = \frac{b-c}{b+c} \cot\frac{A}{2}
$$

\n(b) $\tan\left(\frac{C-A}{2}\right) = \frac{c-a}{c+a} \cot\frac{B}{2}$
\n(c) $\tan\left(\frac{A-B}{2}\right) = \frac{a-b}{a+b} \cot\frac{C}{2}$

'i.

 ϵ L $-$ -set on the set of the se **51**

 $2\sin A$ $2\sin B$ $2\sin C$ 4Δ

gilEngitah.p65
... t Engil J Nileader\I

 $\overline{}$

7. **RADIUS OF THE INCIRCLE 'r'** :

Point of intersection of internal angle bisectors is incentre and perpendicular distance of incentre from any side is called inradius 'r'.

8. RADII OF THE EX·CIRCLES :

Point of intersection of two external angle and one internal angle bisectors is excentre and perpendicular distance of excentre from any side is called exradius. If r , is the radius of escribed circle opposite to angle A of AABC and so on then : **RADII OF THE EX-CIRCLES :**
Point of intersection of two external angle
and one internal angle bisectors is excentre
and perpendicular distance of excentre from
any side is called exradius. If r_1 is the radius of
escri

(a)
$$
r_1 = \frac{\Delta}{s-a} = \operatorname{stan} \frac{A}{2} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \frac{\operatorname{acos} \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}
$$

\n(b) $r_2 = \frac{\Delta}{s-b} = \operatorname{stan} \frac{B}{2} = 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} = \frac{\operatorname{bcos} \frac{A}{2} \cos \frac{C}{2}}{\cos \frac{B}{2}}$
\n(c) $r_3 = \frac{\Delta}{s-c} = \operatorname{stan} \frac{C}{2} = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} = \frac{\cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}$

9. **LENGTH OF ANGLE BISECTOR, MEDIANS & ALTITUDE:**

If m_a , β_a & h_a are the lengths of a median, an angle bisector & altitude from the angle A then,

$$
\frac{1}{2}\sqrt{b^2 + c^2 + 2bc\cos A} = m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}
$$

and

$$
\beta_a = \frac{2bc \cos \frac{\pi}{2}}{b+c}, \ h_a = \frac{a}{\cot B + \cot C}
$$

Note that $m_a^2 + m_b^2 + m_c^2 = \frac{3}{4}(a^2 + b^2 + c^2)$

10. ORTHOCENTRE AND PEDAL TRIANGLE :

- **(a)** Point of intersection of altitudes is orthocentre & the triangle KLM which is formed by joining the feet of the altitudes is called the pedal triangle. (a) Point of intersection of altitudes is

orthocentre & the triangle KLM

which is formed by joining the feet

of the altitudes is called the pedal

triangle.

(b) The distances of the orthocentre

from the angular point
- **(b)** The distances of the orthocentre from the angular points of the ~ABC are 2R cosA, 2R cosB, & 2R cosC.

- **(e)** The distance of orthocentre from sides are 2R cosB cosC, 2R cosC cosA and 2R cosA cosB
- **(d)** The sides of the pedal triangle are a cos A ($=$ R sin 2A), $b\cos B (= R \sin 2B)$ and c cos C (=R sin 2C) and its angles are π - 2A, π -2B and π - 2C
- **(e)** Circumradii of the triangles PBC, PCA, PAB and ABC are equal.
- **(f)** Area of pedal triangle $= 2\Delta \cos A \cos B \cos C$

$$
=\frac{1}{2}R^2\sin 2A\sin 2B\sin 2C
$$

(g) Circum radii of pedal triangle = $R/2$

ghEnghah.p65 **Engly** 1 Book ht/Formula

eert Handbook_Mathst

the Market Sheen

+ 171 Kow \JEE(Adwrced) \J

61201617 model1612

J Matha'i. j $\sum_{i=1}^{n}$

55

18. ANGLES OF ELEVATION AND DEPRESSION:

Let OP be a horizontal line in the vertical plane in which an object R is given and let OR be joined.

In Fig. (a), where the object R is above the horizontal line OP. the angle POR is called the angle of elevation of the object R as seen from the point O. In Fig. (b) where the object R is below the horizontal line OP, the angle POR is called the angle of depression of the object R as seen from the point O. POR is called the angle of elevation of the object R as seen for Noint O. In Fig. (b) where the object R is below the horizontal the angle POR is called the angle of depression of the object R rom the point O.

Book (Engl\English.p65

s\Formula

ent Hanzbook, Maths Fr

IShern Marthu Lander \

node0612016-171Kota1JEEW

STRAIGHT UNE

1. RELATION BETWEEN CARTESIAN CO-ORDINATE & POLAR CO-ORDINATE SYSTEM

If (x, y) are cartesian co-ordinates of a point P, then $: x = r \cos \theta$, $v = r \sin\theta$

and $r=\sqrt{x^2+y^2}$, $\theta=\tan^{-1}\left(\frac{y}{y}\right)$

2. DISTANCE FORMULA AND ITS APPUCATIONS :

If $A(x_1,y_1)$ and $B(x_2,y_2)$ are two points, then

 $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Note:

- (I) Three given points A,B and C are collinear, when sum of any two distances out of AB,BC, CA is equal to the remaining third otherwise the points will be the vertices of triangle. AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 Note:
 SECONDEXENTAGES
 SECONDEXENTAGES
 SECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDEXECONDE
- **(Ii)** Let A,B,C & D be the four given points in a plane. Then the quadrilateral will be :

(a) Square if $AB = BC = CD = DA & AC = BD$; $AC \perp BD$

(b) Rhombus if $AB = BC = CD = DA$ and $AC \ne BD$; $AC \perp BD$

(c) Parallelogram if $AB = DC$, $BC = AD$; $AC \ne BD$; $AC \ne CD$

(d) Rectangle if $AB = CD$, $BC = DA$, $AC = BD$; $AC \nleq BD$

3. **SECTION FORMULA:**

The co-ordinates of a point dividing a line joining the points $A(x, y, y)$ and $B(x_2, y_2)$ in the ratio m : n is given by :

(a) For internal division : $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$ (a) For internal division : $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$ **(b)** For external division : $\left(\frac{mx_2 - nx_1}{mx_2 - ny_1}, \frac{my_2 - ny_1}{my_2 - ny_1} \right)$ **m-n m-n**

(c) Line $ax + by + c = 0$ divides line joining points $P(x, y,)$ & $Q(x, y, y)$

in ratio =
$$
-\frac{(ax_1 + by_1 + c)}{(ax_2 + by_2 + c)}
$$

4. CO-ORDINATES OF SOME PARTICULAR POINTS:

Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are vertices of any triangle

ABC, then

(a) Centroid:

(i) The centroid is the point of intersection of the medians (line joining the mid point of sides and opposite vertices): intersection of the medians

(line joining the mid point of

sides and opposite vertices).

(ii) Centroid divides the median in

the ratio of 2 : 1.

(iii) Co-ordinates of centroid G $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

(II) Centroid divides the median in the ratio of 2 : l.

the ratio of 2 : 1.
(iii) Co-ordinates of centroid $G\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

(iv) If P is any internal point of triangle such that area of $\triangle APB$, AAPC and ABPC are same then P must be centroid.

(b) Ineenter:

The incenter is the point of intersection of internal bisectors of the angles of a triangle. Also it is a centre of a drcle touching

all the sides of a triangle.
 $B(x_2, y_2)$ D C(x₃, y₃)

Co-ordinates of incenter I $\left(\frac{ax_1 + bx_2 + cx_3}{a + b + c}, \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$ \int_{2}^{8} ax₁ + bx₂ + cx₃ ay₁ + by₂ + cy₃ $\frac{3}{8}$ Co-ordinates of incenter $I(\frac{1}{a+b+c}, \frac{1}{a+b+c})$

 \mathbb{F} Where a, b, c are the sides of triangle ABC.

- **(l)** Angle bisector divides the opposite sides in the ratio of **Note :**
(i) Angle bisector divides the opposite
remaining sides. e.g. $\frac{BD}{DC} = \frac{AB}{AC} = \frac{c}{b}$
	-
- (ii) Incenter divides the angle bisectors in the ratio $(b+c): a, (c+a): b, (a+b): c$

(e) Clrcumcenter:

It is the point of intersection of perpendicular bisectors of the sides of a triangle. If O is the circumcenter of any triangle ABC,

then $OA^2 = OB^2 = OC^2$.

Also it is a centre of a circle touching all the vertices of a triangle. **Note:**

- (I) If a triangle is right angle , then its circumcenter is mid point of hypotenuse. Also it is a centre of a circle touching all the vertices of a tri
 Note :
 (i) If a triangle is right angle, then its circumcenter is mid p

of hypotenuse.
 (ii) Find perpendicular bisector of any two sides and sol
	- (ii) Find perpendicular bisector of any two sides and solve them to find circumcentre.

(eI) Orthocenter:

It is the point of intersection of perpendicular drawn from vertices on opposite sides of a triangle and can be obtained by solving the equation of any two altitudes.

Note:

If a triangle is right angled triangle, then orthocenter is the point where right angle is formed.

Remarks :

- (i) If the triangle is equilateral, then centroid, incentre, orthocenter, circumcenter, coincides.
- **(H)** Orlhocentre, centroid and circumcentre are always collinear and centroid divides the line joining. orthocentre and circumcentre in the ratio 2 : 1
- (iii) In an isosceles triangle centroid, orthocentre, incentre, circumcentre lies on the same line.

(e) Ex-centers:

The centre of the circle which touches side BC and the extended portions of sides AB and AC is called the ex-centre of \triangle ABC with respect to the vertex A. It is denoted by I, and its coordinates are

$$
I_1 = \left(\frac{-ax_1 + bx_2 + cx_3}{-a + b + c}, \frac{-ay_1 + by_2 + cy_3}{-a + b + c} \right)
$$

Similarly ex-centers of $\triangle ABC$ with respect to vertices B and C are denoted by I₂ and I₃ respectively, and

$$
I_2 = \left(\frac{ax_1 - bx_2 + cx_3}{a - b + c}, \frac{ay_1 - by_2 + cy_3}{a - b + c}\right)
$$

$$
I_3 = \left(\frac{ax_1 + bx_2 - cx_3}{a + b - c}, \frac{ay_1 + by_2 - cy_3}{a + b - c}\right)
$$

5. AREA OF TRIANGLE :

Let $A(x_1,y_1), B(x_2,y_2)$ and $C(x_3,y_3)$ are vertices of a triangle, then

 $1 \times 1 \times 1 \times 1$ Area of $\triangle ABC = \left| \frac{1}{2} |x_2 \ y_2 \ 1| \right| = \frac{1}{2} |x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|$ $I_3 = \left(\frac{ax_1 + bx_2 - cx_3}{a + b - c}, \frac{ay_1 + by_2 - cy_3}{a + b - c}\right)$

AREA OF TRIANGLE :

Let A(x₁,y₁), B(x₂,y₂) and C(x₃,y₃) are vertices of a triangle

Area of $\triangle ABC = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2$

To remember the above formula, take the help of the following method :

 $\left[\sum_{1}^{3} \left[\int_{x_1}^{x_1} X_{y_2}^{x_2} X_{y_3}^{x_3} X_{y_1}^{x_1} \right] = \left[\frac{1}{2} \left[(x_1 y_2 - x_2 y_1) + (x_2 y_3 - x_3 y_2) + (x_3 y_1 - x_1 y_3) \right] \right]$ **Remarks** :

(i) If the area of triangle joining three points is zero, then the points are collinear. ! **(Ii) Area of Equilateral triangle**

If altitude of any equilateral triangle is P, then its area = $\frac{P^2}{\sqrt{3}}$.

 $\frac{3}{1}$ If 'a' be the side of equilateral triangle, then its area = $\left(\frac{a^2\sqrt{3}}{4}\right)$

(iii) Area of quadrilateral whose consecutive vertices are $(x_1, y_1), (x_2, y_2)$,

$$
(x_3, y_3)
$$
 & (x_4, y_4) is $\frac{1}{2}\begin{vmatrix} x_1 - x_3 & y_1 - y_3 \ x_2 - x_4 & y_2 - y_4 \end{vmatrix}$

6. CONDITION OF COLLINEARITY FOR THREE POINTS: Three points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are collinear if any one of the given point lies on the line passing through the remaining two points. Thus the required condition is -

7. EQUATION OF STRAIGHT UNE :

A relation between x and y which is satisfied by co-ordinates of every point lying on a line is called equation of the straight line. Here remember that every one degree equation in variable x and y always represents a straight line i.e. $ax + by + c = 0$; a & $b \ne 0$ simultaneously. between that every one degree equation of the straight line interest remember that every one degree equation in variable x and vays represents a straight line i.e. $ax + by + c = 0$; a & $b \neq$ nultaneously.
Equation of a line p

- (a) Equation of a line parallel to x-axis at a distance a is $y = a$ or $v=-a$
- **(b)** Equation of x-axis is $y = 0$
- **(c)** Equation of line parallel to y-axis at a distance b is $x = b$ or $x = -b$
- **(d)** Equation of y-axis is $x = 0$

8. SLOPE OF UNE :

If a given line makes an angle θ $(0^{\circ} \le \theta < 180^{\circ}, \theta \ne 90^{\circ})$ with the positive direction of x-axis, then slope of this line will be $tan\theta$ and is usually denoted by the letter m i.e. $m=tan\theta$. Obviously the slope of the x-axis and

all English.p65 i tEngl **Book** e**\Formula**

dansforoid, Mashel I
.

LTVKou LIEBAdamond) L

A Shapel i **Master** Landar)

line parallel to it is zero and y-axis and line parallel to it does not exist.

If $A(x_1, y_1)$ and $B(x_2, y_2)$ & $x_1 \neq x_2$ then slope of line AB =

IN English p

~ 1

Mattel Formula

f ~ i

jiager/

woden 2016-17\Kors\JEEAAareed\
I

E

9. STANDARD FORMS OF EQUATIONS OF A STRAIGHT LINE:

- (a) Slope Intercept form: Let m be the slope of a line and c its intercept on y-axis, then the equation of this straight line is written $as: v = mx + c$
- (b) Point Slope form: If m be the slope of a line and it passes through a point (x_1, y_1) , then its equation is written as : $y - y_1 = m(x-x_1)$
- (c) Two point form: Equation of a line passing through two points (x_1, y_1) and (x_2, y_2) is written as :

$$
y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)
$$
 or $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$

(d) Intercept form: If a and b are the intercepts made by a line

on the axes of x and y, its equation is written as : $\frac{1}{1} + \frac{1}{1} = 1$ a b

(e) Normal form: If p is the length of perpendicular on a line from the origin and α the angle which this perpendicular makes with positive x-axis, then the equation of this line is written as : $xcos\alpha + vsin\alpha = p$ (p is always positive), where $0 \le \alpha < 2\pi$. (d) **Intercept form**: It a and b are the intercepts made by a

on the axes of x and y, its equation is written as : $\frac{x}{a} + \frac{y}{b}$

(e) **Normal form**: If p is the length of perpendicular on a

from the origin and α t

(f) Parametric form : To find the equation of a straight line which passes through a given point A(h, k) and makes a given angle θ with the positive direction of the x-axis, p(x, y) is any point on the line LAL', Let $AP = r$ then $x - h = r \cos\theta$, $y - k =$

I

 $r \sin\theta \& \frac{x-h}{\cos\theta} = \frac{y-k}{\sin\theta} = r \text{ is the equation}$ of the straight line LAL',

Any point P on the line will be of the form $(h + r \cos\theta, k + r)$ $sin\theta$), where $|r|$ gives the distance of the point P from the fixed point (h, k),

g/Lington.p65 **I Engli** Book s *V*Formula

node065.2016-171Kota1JEE0Advanced1Leeder1Maths1Sheet1Handbook_Maths

12. DISTANCE BETWEEN TWO PARALLEL LINES : (a) The distance between two parallel lines $ax + by + c = 0$ and $ax+by+c_o=0$ is $=\frac{|c_1-c_2|}{2}$ $\sqrt{a^2+b^2}$ (Note: The coefficients of $x \& y$ in both equations should be same) **(b)** The area of the parallelogram = $\frac{p_1 p_2}{\sin \theta}$, where p_1 & p_2 are distances between two pairs of opposite sides $\& \theta$ is the angle between any two adjacent sides. Note that area of the parallelogram bounded by the lines $y = m_1x + c_1$, $y = m_1x + c_2$ is given by $\frac{|(c_1 - c_2) (d_1 - d_2)|}{|(c_1 - c_2) (d_1 - d_2)|}$ c_2 and $y = m_2x + d_1$, $y = m_2x + d_2$ is given by $\frac{|c_1 - c_2x + d_1 - c_2x|}{m_1 - m_2}$. 13. EQUATION OF UNES PARALLEL AND PERPENDICUlAR

TO A GIVEN UNE : QUATION OF LINES PARALLEL AND PERPENDICUL

O A GIVEN LINE :

a) Equation of line parallel to line ax + by + c = 0

ax + by + λ = 0

b) Equation of line perpendicular to line ax + by + c = 0

bx - ay + k = 0

(a) Equation of line parallel to line $ax + by + c = 0$

 $ax + by + \lambda = 0$

(b) Equation of line perpendicular to line $ax + by + c = 0$

 $bx - av + k = 0$

Here λ , k, are parameters and their values are obtained with the help of additional information given in the problem.

14. STRAIGHT UNE MAKING A GIVEN ANGLE WITH A UNE :

Equations of lines passing through a point (x_1, y_1) and making an angle α , with the line y=mx+c is written as:

$$
y - y_1 = \frac{m \pm \tan \alpha}{1 \mp m \tan \alpha} (x - x_1)
$$

15. POSITION OF TWO POINTS WITH RESPECT TO A GIVEN UNE:

Let the given line be ax + by + c = 0 and $P(x_1, y_1)$, $Q(x_2, y_2)$ be two points. If the quantities $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ have the same

signs, then both the points P and Q lie on the same side of the line $ax + by + c = 0$. If the quantities $ax_1 + by_1 + c$ and $ax_2 + by_2 + c$ have opposite signs, then they lie on the opposite sides of the line.

16. CONCURRENCY OF UNES :

Three lines $a_1x + b_1y + c_1 = 0$; $a_2x + b_2y + c_2 = 0$ and $a_3x + b_3y + c_3 = 0$

 $\begin{vmatrix} a_1 & b_1 & c_1 \end{vmatrix}$ are concurrent, if $\Delta = \begin{vmatrix} 1 & 0 \\ a_2 & b_2 \\ a_3 & a_3 \end{vmatrix} = 0$ a_3 b_3 c_3

Note:

If lines are concurrent then $\Delta = 0$ but if $\Delta = 0$ then lines may or may not be concurrent {lines may be parallel}.

17. REFLECTION OF A POINT :

Let $P(x,y)$ be any point, then its image with respect to

- (a) x -axis is $Q(x, -y)$
- (b) y-axis is $R(-x, y)$
- (c) origin is $S(-x, -y)$
- **(d)** line $y=x$ is $T(y, x)$

18. TRANSFORMATION OF AXES

(a) Shifting of origin without rotation ^y **of axes :**
If coordinates of any point P(x, y) with

respect to new origin (α, β) will be (x', y) α, β $then x = x' + \alpha, \quad y = y' + \beta$

or $x' = x - \alpha$, $y' = y - \beta$

Thus if origin is shifted to point (α, β) without rotation of axes, then new equation of curve can be obtained by putting $x + \alpha$ in place of x and $y + \beta$ in place of y.

y.

y

The above relation between (x, y) and (x', y) can be easily obtained

19. EQUATION OF BISECTORS OF ANGLES BETWEEN TWO UNES:

 $a_2x + b_2y+c_2=0$, then equation of bisectors of the angles between **these lines are written as :**

$$
\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \pm \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}
$$
(1)

(a) Equation of bisector of angle containing origin :

If the equation of the lines are written with constant terms c_1 and $c₂$ positive, then the equation of the bisectors of the angle containing the origin is obtained by taking positive sign in (1)

(b) Equation of bisector of acute/obtuse angles:

See whether the constant terms c , and c , in the two equation are +ve or not. **If** not then multiply both sides of given equation by -1 to make the constant terms positive

Determine the sign of $a_1a_2 + b_1b_2$

i.e. if $a_1a_2 + b_1b_2 > 0$, then the bisector corresponding to + sign gives obtuse angle bisector

$$
\frac{a_1x + b_1y + c_1}{\sqrt{a_1^2 + b_1^2}} = \frac{a_2x + b_2y + c_2}{\sqrt{a_2^2 + b_2^2}}
$$

20. **FAMILY OF UNES :**

If equation of two lines be $P = a_1x + b_1y + c_1 = 0$ and $Q = a_zx+b_zy + c_z = 0$, then the equation of the lines passing through the point of intersection of these lines is : $P + \lambda Q = 0$ or $a_1x + b_1y + c_2y + c_3y + c_4y$ $c_1 + \lambda (a_2x + b_2y + c_2) = 0$. The value of λ is obtained with the help of the additional informations given In the problem. If equation of two lines be $P = a_1x + b_1y + c_1 = 0$
 $Q = a_2x + b_2y + c_2 = 0$, then the equation of the lines passing the point of intersection of these lines is : $P + \lambda Q = 0$ or $a_1x - c_1 + \lambda (a_2x + b_2y + c_2) = 0$. The value of λ

21. GENERAL EQUATION AND HOMOGENEOUS EQUATION OF SECOND DEGREE :

- **(a)** A general equation of second degree ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 represent a pair of straight lines if $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0$ or
	- a h g $h \quad b \quad f = 0$ $g f$
- **(b)** If θ be the angle between the lines, then $\tan \theta = \pm \frac{2\sqrt{h^2 ab}}{h}$

Obviously these lines are

(i) Parallel, if $\Delta = 0$, $h^2 = ab$ or if $h^2 = ab$ and $bg^2 = af^2$

- (ii) Perpendicular, if $a + b = 0$ i.e. coeff. of $x^2 +$ coeff. of $y^2 = 0$.
- **(c)** Homogeneous equation of 2^{nd} degree $ax^2 + 2hxy + by^2 = 0$ always represent a pair of straight lines whose equations are (c) Homogeneous equation of 2^{nd} degree $ax^2 + 2hxy + by^2 = 0$
always represent a pair of straight lines whose equations are

$$
y = \left(\frac{-h \pm \sqrt{h^2 - ab}}{b}\right) x = y = m_1 x \& y = m_2 x
$$

and $m_1 + m_2 = -\frac{2h}{h}$; $m_1m_2 = \frac{a}{h}$

These straight lines passes through the origin and for finding the angle between these lines same formula as given for general equation is used.

The condition that these lines are:

- **(i)** At right angles to each other is $a + b = 0$. i.e. co-efficient of x^2 + co-efficient of $y^2 = 0$.
- (ii) Coincident is $h^2 = ab$.

(iii) Equally inclined to the axis of x is $h = 0$. i.e. coeff. of $xy = 0$.

(d) The combined equation of angle bisectors between the lines represented by homogeneous equation of $2nd$ degree is given (d) The combined equation of angle bisectors between the
represented by homogeneous equation of 2^{nd} degree is
by $\frac{x^2 - y^2}{a - b} = \frac{xy}{h}$, $a \ne b$, $h \ne 0$.
(e) Pair of straight lines perpendicular to the lines $ax^2 + 2h$

by
$$
\frac{x^2 - y^2}{a - b} = \frac{xy}{h}, a \neq b, h \neq 0.
$$

(e) Pair of straight lines perpendicular to the lines $ax^2 + 2hxy + by^2 =$ 0 and through origin are given by $bx^2 - 2hxy + ay^2 = 0$.

(f) If lines $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ are parallel then $\frac{1}{2}$ distance between them is $= 2 \sqrt{\frac{g - ac}{a}}$ $a(a + b)$

22. EQUATIONS OF LINES JOINING THE POINTS OF INTERSECTION OF A LINE AND A CURVE TO THE ORIGIN:

Let the equation of curve be :

 $ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$ (i)

and straight line be

Now joint equation of line OP and OQ joining the origin and points of intersection P and Q can be obtained by making the equation (i) homogenous with the help of equation of the line. Thus required equation is given by -

$$
ax^2 + 2hxy + by^2 + 2(gx + fy)\left(\frac{\ell x + my}{-n}\right) + c\left(\frac{\ell x + my}{-n}\right)^2 = 0
$$

23. STANDARD RESULTS:

(a) Area of rhombus formed by lines $a \mid x \mid + b \mid y \mid + c = 0$

or
$$
\pm ax \pm by + c = 0
$$
 is $\frac{2c^2}{|\text{ab}|}$.

 c^2 **(b)** Area of triangle formed by line $ax+by+c = 0$ and axes is $\frac{1}{2 \cdot 1 \cdot 2b}$.

(c) Co-ordinate of foot of perpendicular (h, k) from (x_1, y_1) to the line

(c) Co-ordinate of foot of perpendicular (h, k) from
$$
(x_1, y_1)
$$
 to the
\n $ax+by+c = 0$ is given by
$$
\frac{h-x_1}{a} = \frac{k-y_1}{b} = \frac{-(ax_1+by_1+c)}{a^2+b^2}
$$

\n(d) Image of point (x_1, y_1) w.r. to the line $ax+by+c = 0$ is given
\n $h-x_1 = k-y_1 = -2(ax_1+by_1+c)$

(d) Image of point (x_1, y_1) w.r. to the line $ax+by+c = 0$ is given by

1994 (16 c/ 11)

$$
\frac{h - x_1}{a} = \frac{k - y_1}{b} = \frac{-2(ax_1 + by_1 + c)}{a^2 + b^2}
$$

(i) coefficient of x^2 = coefficient of y^2 or a = b \neq 0

 (iii) coefficient of $xy = 0$ or $h = 0$

(iii) $(g^2 + f^2 - c) \ge 0$ (for a real circle)
(c) Intercepts cut by the circle on axes :

The intercepts cut by the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ on:

(i) $x-axis = 2\sqrt{g^2 - c}$ (ii) $y-axis = 2\sqrt{f^2 - c}$
 Note: Intercept cut by a line on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ or

length of chord of the circle = $2\sqrt{a^2-P^2}$ where a is the radius and P is the length of perpendicular from the centre to the chord.

When a straight line meet a circle on two coincident points then it is \blacksquare called the tangent of the circle.

(a) Condition of Tangency :

The line $L = 0$ touches the circle $S = 0$ if P the length of the perpendicular from the centre to that line and radius of the circle r are equal i.e. $P = r$.

(b) Equation of the tangent $(T = 0)$:

- (i) Tangent at the point (x, y) on the circle $x^2 + y^2 = a^2$ is $\mathbf{x} \mathbf{x}_1 + \mathbf{y} \mathbf{y}_1 = \mathbf{a}^2$.
- (ii) (1) The tangent at the point (acos t, asin t) on the circle $x^{2} + y^{2} = a^{2}$ is **xcos t** + *vsin t* **= a**
	- (2) The point of intersection of the tangents at the points

$$
P(\alpha) \text{ and } Q(\beta) \text{ is } \left(\frac{a \cos \frac{\alpha+\beta}{2}}{\cos \frac{\alpha-\beta}{2}}, \frac{a \sin \frac{\alpha+\beta}{2}}{\cos \frac{\alpha-\beta}{2}} \right).
$$

(iii) The equation of tangent at the point (x, y, y) on the circle $x^{2} + y^{2} + 2qx + 2fy + c = 0$ is $x^2 + y^2 = a^2$ is **xcost** + **ysin t** = **a**

(2) The point of intersection of the tangents at the
 $P(\alpha)$ and $Q(\beta)$ is $\left(\frac{a\cos\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}}, \frac{a\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}}\right)$.

(iii) The equation of tangent at the poin

 $xx, + yy, + g(x + x,) + f(y+y,) + c = 0$

(iv) If line $y = mx + c$ is a straight line touching the circle

 $x^{2} + y^{2} = a^{2}$, then $c = \pm a\sqrt{1 + m^{2}}$ and contact points are

$$
\left(\mp \frac{am}{\sqrt{1+m^2}}, \pm \frac{a}{\sqrt{1+m^2}}\right)
$$
 or $\left(\mp \frac{a^2m}{c}, \pm \frac{a^2}{c}\right)$ and equation

of tangent is

I'Englash.p65

Book E **INFormula**

I Sheet I Handbook_Made I Fil

n **1924**0 (164 × 2013 г.) – 1 2 × 16 села) - ЦЕЕЗА областичает) - 1
1

I Machay Illeader

$$
y = mx \pm a\sqrt{1 + m^2}
$$

(v) The equation of tangent with slope m of the circle $(x - h)^2 + (y - k)^2 = a^2$ is

$$
(y - k) = m(x - h) \pm a\sqrt{1 + m^2}
$$

Note:

To get the equation of tangent at the point (x, y) on any curve

we replace xx_1 in place of x^2 , yy_1 in place of y^2 , $\frac{x + x_1}{2}$ in

place of x, $\frac{y+y_1}{2}$ in place of y, $\frac{xy_1+yx_1}{2}$ in place of xy and c in place of c.

(c) Length of tangent $(\sqrt{S_1})$: $\qquad \qquad$ $\qquad \$

The length of tangent drawn from point (x_i, y_i) out side the circle $S = x^2 + y^2 + 2\sigma x + 2f y + c = 0$ is. $PT = \sqrt{S_1} = \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}$

By Lingish 265 i (Eng) **BOOK ILFormula**

ISLAM YORK MARK

ShaerN **TELEMISTIC** \ddot{z} **INLeader**

(d) Equation of Pair of tangents $(SS, = T^2)$:

Let the equation of circle $S = x^2 + y^2 = a^2$ and $P(x_1, y_1)$ is any point outside the circle. From the point we can draw two real and distinct tangent PQ & PR and combine equation of pair of tangents is - $(x^2 + y^2 - a^2) (x_1^2 + y_1^2 - a^2) = (xx_1 + yy_1 - a^2)^2$ or $SS_1 = T^2$ P1= $\sqrt{5_1} = \sqrt{x_1^2 + y_1^2 + 2gx_1 + 2ty_1 + c}$
 Summer Studiers (SS₁ = T²):

Let the equation of circle $S = x^2 + y^2 = a^2$ and $P(x_1, y_1)$ is any po

outside the circle. From the point we can draw two real and distit

tang

5. **NORMAL OF CIRCLE** :

Normal at a point of the circle is the straight line which is perpendicular to the tangent at the point of contact and passes through the centre of circle.

(a) Equation of normal at point (x_1, y_1) of circle $x^2 + y^2 + 2gx + 2fy$ $+c = 0$ is

$$
\mathbf{y} - \mathbf{y}_1 = \left(\frac{\mathbf{y}_1 + \mathbf{f}}{\mathbf{x}_1 + \mathbf{g}}\right)(\mathbf{x} - \mathbf{x}_1)
$$

(b) The equation of normal on any point (x_1, y_1) of circle $x^2 + y^2 =$
 a^2 is $\left(\frac{y}{x} = \frac{y_1}{x_1}\right)$.

$$
a^2 \text{ is } \left(\frac{y}{x} = \frac{y_1}{x_1}\right).
$$

6. CHORD OF CONTACT : If two tangents PT , & PT , are drawn from the point $P(x)$, YI) to the circle $S = x^2 + y^2 + 2\sigma x + 2f y + c = 0$, then the equation of the chord of contact T,T_a is : L $P(x, y)$

 $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$ (i.e. T = 0 same as equation of tangent).

7. EQUATION OF THE CHORD WITH A GIVEN MIDDLE POINT $(T = S_1)$:

The equation of the chord of the circle $S = x^2 + y^2 + 2gx + 2fy + c = 0$

0 in terms of its mid point $M(x_1, y_1)$ is $y - y_1 = -\frac{x_1 + g}{y_1 + f} (x - x_1)$. This on simplication can be put in the form

 $xx_1 + yy_1 + g (x + x_1) + f (y + y_1) + c = x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c$ which is designated by $T = S_1$.

DIRECTOR CIRCLE :

The locus of point of intersection of two perpendicular tangents to a circle is called director circle. Let the circle be $x^2 + y^2 = a^2$, then the equation of director circle is $x^2 + y^2 = 2a^2$. This on simplication can be put in the form
 $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = x_1^2 + y_1^2 + 2gx_1 +$

which is designated by $T = S_1$.
 DIRECTOR CIRCLE :

The locus of point of intersection of two perpendicular tang

circle is ca

:. director circle is a concentric circle whose radius is $\sqrt{2}$ times the radius of the circle.

Note:

The director circle of

 $x^{2} + y^{2} + 2gx + 2fy + c = 0$ is $x^{2} + y^{2} + 2gx + 2fy + 2c-g^{2}-f^{2} = 0$

9. POLE AND POlAR :

Let any straight line through the given point $A(x_i,y_j)$ intersect the given circle S = 0 in two points P and Q and if the tangent of the circle at P and Q meet at the point R then locus of

8.

point R is called polar of the point A and point A is called the pole. with respect to the given circle.

The equation of the polar is the T=0, so the polar of point $(x, y,)$ w.r.t circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $xx, +yy, +g(x+x) + f(y+y) + c = 0$

Pole of a given line with respect to a circle

To find the pole of a line we assume the coordinates of the pole then from these coordinates we find the polar. This polar and given line represent the same line. Then by comparing the coefficients of similar terms we can get the coordinates of the pole. The pole of $\ell x + mv + n = 0$

w.r.t. circle $x^2 + y^2 = a^2$ will be $\left(\frac{-\ell a^2}{n}, \frac{-ma^2}{n}\right)$

10. FAMILY OF CIRCLES :

- **(a)** The equation of the family of circles passing through the points of intersection of two circles $S_1 = 0$ & $S_2 = 0$ is : $S_1 + K S_2 = 0$ ($K \neq -1$). MILY OF CIRCLES :

The equation of the family of circles passing through the points of intersection of two circles $S_1 = 0$ & $S_2 = 0$ is $S_1 + K S_2 = 0$ ($K \ne -1$).

The equation of the family of circles passing through the
- **(b)** The equation of the family of circles passing through the point of intersection of a circle $S = 0$ & a line $L = 0$ is given by $S + KL = 0$.

I: **ISPONER** i Brag 1 j

juga San Lindoo, juga C

! , **ILluster**

71Kota¹ **TT**Note • i

(e) The equation of a family of circles passing through two given points (x_1, y_1) & (x_2, y_2) can be written in the form:

 $x \quad y \quad 1$ $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) + K |x_1, y_1, 1| = 0$ where K is a parameter. $\begin{vmatrix} x_2 & y_2 & 1 \end{vmatrix}$

- **(d)** The equation of a family of circles touching a fixed line $y - y_1 = m (x - x_1)$ at the fixed point (x_1, y_1) is $(x - x_1)^2 + (y - y_1)^2$ $+ K [y - y] - m (x - x) = 0$, where K is a parameter.
- (e) Family of circles circumscribing a triangle whose sides are given by $L_1 = 0$; $L_2 = 0$ & $L_3 = 0$ is given by; $L_1L_3 + \lambda L_2L_3 + \mu L_3L_4 = 0$ provided coefficient of $xy = 0$ & coefficient of $x^2 = \text{coefficient of } y^2$.
- - **(d)** Equation of circle circumscribing a quadrilateral whose side in order are represented by the lines $L_1 = 0$, $L_2 = 0$, $L_3 = 0$ & $L_4 = 0$ are $L_1L_3 + \lambda L_2L_4 = 0$ provided coefficient of x^2 = coefficient of y^2 and coefficient of $xy = 0$.

11. DIRECT AND TRANSVERSE COMMON TANGENTS:

Let two circles having centre C, and C, and radii, r_1 and r_2 and C,C, is the distance between their centres then:

(a) Both circles will touch :

(i) Externally if $C_1C_2 = r_1 + r_2$ r_s , point P divides C₁C₂ in

 $c_1 \vee c_2$

In this case there are **three common tangents.**

(ii) **Internally** if $C_1C_2 = |r_1 - r_2|$, point P divides C_1, C_2 in the ratio $r_1 : r_2$ **externally** and in this case there **will** (ii) Internally if $C_1C_2 = |r_1 - r_2|$, point P
divides C_1C_2 in the ratio $r_1 : r_2$
externally and in this case there will
be only one common tangent.
(b) The circles will intersect :
when $|r_1 - r_2| < C_1C_2 < r_1$

be only **one common tangent.**

(b) The circles will intersect :

when $|r_1 - r_2| < C_1 C_2 < r_1$ $+ r₂$ in this case there are **two common tangents.**

(c) The circles will not intersect

(I) One circle will lie inside the other circle if $C_1C_2 < |r_1-r_2|$ In this case there will be no common tangent.

(ii) When circle are apart from each other then $C, C, >r, +r$, and in this case there will be **four common tangents.** Lines PQ and RS are called **transverse or indirect** or **internal** common tangents and these lines meet line C_{,C}, on T, and T, divides the line C_1C_2 in the ratio $r_1 : r_2$ internally and lines AB & CD are called **direct or external** common tangents. These lines meet C, C , produced on T_n . Thus T_n divides C₁C₂, externally in the ratio $r_1 : r_2$.

Note: Length of direct common tangent = $\sqrt{(C_1C_2)^2 - (r_1 - r_2)^2}$

Length of transverse common tangent = $\sqrt{(C_1C_2)^2 - (r_1 + r_2)^2}$

12. THE ANGLE OF INTERSECTION OF TWO CIRCLES:

Definition: The angle between the tangents of two circles at the point of intersection of the two circles is called angle of intersection of two circles. **Definition :** The angle between the tangents of two circles at point of intersection of the two circles is called angle of intersection of the two circles is called angle of intersection of two circles.

then $\cos\theta = \frac{2g_1g_2 + 2f_1f_2 - c_1 - c_2}{2\sqrt{g_1^2 + f_1^2 - c_2}}, \frac{f_1f_2 - c_2}{\sqrt{g_2^2 + f_2^2 - c_2}}$ or $\cos\theta = \left(\frac{r_1^2 + r_2^2 - d^2}{2r_1r_2}\right)$

Here r_1 and r_2 are the radii of the circles and d is the distance between their centres.

If the angle of intersection of the two circles is a right angle then such circles are called "Orthogonal circles" and conditions for the circles to be orthogonal is

 $2g_1g_2 + 2f_1f_2 = c_1 + c_2$

13. RADICAL AXIS OF THE TWO CIRCLES $(S_1 - S_2 = 0)$: **Definition:** The locus of a point, which moves in such a way that

the length of tangents drawn from it to the circles are equal is called the radical axis. If two circles are·

$$
S_1 \equiv x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0
$$

$$
S_2 \equiv x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0
$$

Then the equation of radical axis is given by $S_1 - S_2 = 0$

- **Note:**
- **(i)** If two circles touches each other then common tangent is radical **axis.** $S_2 = x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$

then the equation of radical axis is given by $S_1 - S_2 = 0$

ote:

If two circles touches each other then common tangent is radiaxis.

(ii) If two circles cuts each other then common chord is radical axis.

- **(iii)** If two circles cuts third circle orthogonally then radical axis of first two is locus of centre of third circle.
- **(Iv)** The radical axis of the two circles is perpendicular to the line joining the centre of two circles but not always pass through mid point of it. $\mathsf F$. The contract of the

14. Radical centre :

The radical centre of three circles is the point from which length of tangents on three circles are equal i.e. the point of intersection of radical axis of the circles is the radical centre of the circles.

Note:

(i) The circle with centre as radical centre and radius equal to the length of tangent from radical centre to any of the circle, will cut the three circles orthogonally.

(ii) If three circles are drawn on three sides of a triangle taking them as diameter then its orthocenter will be its radical centre . (ii) If three circles are drawn on three sides of a thange
them as diameter then its orthocenter will be its radica

PARABOLA

1. CONIC SECTIONS:

A conic section, or conic is the locus of a point which moves in a plane so that its distance from a fixed point is in a constant ratio to its perpendicular distance from a fixed straight line.

- **(a)** The fixed point is called the FOCUS.
- **(b)** The fixed straight line is called the DIRECTRIX.
- **(c)** The constant ratio is called the ECCENTRICITY denoted bye.
- **(d)** The line passing through the focus & perpendicular to the directrix is called the AXIS.
- **(e)** A point of intersection of a conic with its axis is called a VERTEX.

2. GENERAL EQUATION OF A CONIC: FOCAL DIRECTRIX PROPERTY: directrix is called the AXIS.
 **SECUTE AXIS ADDENTE ENERAL EQUATION OF A CONIC : FOCAL DIRECTR

ROPERTY :

He general equation of a conic with focus (p, q) & direct

+ my + n = 0 is :

+ m²)** $[(x - p)^2 + (y - q)^2] = e^2 (lx + my + n)^2$

The general equation of a conic with focus (p, q) & directrix $lx + mv + n = 0$ is :

$$
(\frac{1^2 + m^2}{(x - p)^2} + (y - q)^2) = e^2 (lx + my + n)^2
$$

 \equiv ax² + 2hxy + by² + 2qx + 2fy + c = 0

3. **DISTINGUISHING BETWEEN THE CONIC:**

The nature of the conic section depends upon the position of the focus S w.r.t. the directrix & also upon the value of the eccentricity e. Two different cases arise.

Case (i) When the focus lies on the directrix :

In this case $D = abc + 2 fgh - af^2 - bq^2 - ch^2 = 0$ & the general equation of a conic represents a pair of straight lines and if :

 $e > 1$, $h^2 > ab$ the lines will be real & distinct intersecting at S.

 $e = 1$, $h^2 = ab$ the lines will coincident.

 $e < 1$, $h^2 < ab$ the lines will be imaginary.

s Handbook

ase (ii) When the focus does not lie on the directrix :

The conic represents:

4. PARABOlA :

A parabola is the locus of a point which moves in a plane, such that its distance from a fixed point (focus) is equal to its perpendicular distance from a fixed straight line (directrix).

Standard equation of a parabola is $y^2 = 4$ ax. For this parabola :

- **(i)** Vertex is (0. 0) **(H)** Focus is (a, 0)
- **(iii)** Axis is $y = 0$ **(iv)** Directrix is $x + a = 0$

(a) Focal distance :

The distance of a point on the parabola from the focus is called the FOCAL DISTANCE OF THE POINT. (ii) Axis is $y = 0$ (iv) Directrix is $x + a = 0$

(a) Focal distance :

The distance of a point on the parabola from the focus is

the FOCAL DISTANCE OF THE POINT.

(b) Focal chord :

A chord of the parabola, which passes t

(b) Focal chord:

A chord of the parabola, which passes through the focus is called a FOCAL CHORD.

(c) Double ordinate:

A chord of the parabola perpendicular to the axis of the symmetry is called a DOUBLE ORDINATE with respect to axis as diameter.

(d) Latus rectum :

A focal chord perpendicular to the axis of parabola is called the LATUS RECTUM. For $y^2 = 4ax$.

 (i) Length of the latus rectum = 4a.

(ii) Length of the semi latus rectum = 2a.

(iii) Ends of the latus rectum are $L(a, 2a)$ & $L'(a, -2a)$

Note that :

ALLEI

- **(I)** Perpendicular distance from focus on directrix = half the latus **rectum.**
- **(H)** Vertex is middle point of the focus & the point of intersection of directrix & axis.
- **(iii)** Two parabolas are said to be equal if they have latus rectum of same length.

5. PARAMETRIC REPRESENTATION:

The simplest & the best form of representing the co-ordinates of a point on the parabola $y^2 = 4ax$ is (at², 2at). The equation $x = at^2$ & $y = 2$ at together represents the parabola $y^2 = 4ax$, t being the parameter.

6. TYPE OF PARABOLA :

Four standard forms of the parabola are $y^2 = 4ax$; $y^2 = -4ax$ $x^2 = 4ay$; $x^2 = -4ay$

7. **POSITION OF A POINT RElATIVE TO A PARABOlA**

The point (x_1 , y_1) lies outside, on or inside the parabola $y^2 = 4ax$ according as the expression $y_1^2 - 4ax$, is positive, zero or negative.

8. CHORD JOINING TWO POINTS :

The equation of a chord of the parabola $y^2 = 4ax$ joining its two points P(t,) and Q(t₂) is $y(t_1 + t_2) = 2x + 2at_1t_2$ **CHORD JOINING TWO POINTS :**

The equation of a chord of the parabola $y^2 = 4ax$ joining its two

points P(t₁) and Q(t₂) is $y(t_1 + t_2) = 2x + 2at_1t_2$
 Note :
 (i) If PQ is focal chord then $t_1t_2 = -1$.
 (ii) Extre

Note:

(i) If PQ is focal chord then $t, t = -1$.

(iii) If $t, t₂ = k$ then chord always passes a fixed point (-ka, 0).

9. **UNE & A PARABOlA :**

(a) The line $y = mx + c$ meets the parabola $y^2 = 4ax$ in two points real, coincident or imaginary according as $a \geq c$ cm

 \Rightarrow condition of tangency is, $c = \frac{a}{m}$.

Note: Line $y = mx + c$ will be tangent to parabola

 $x^2 = 4$ ay if $c = -am^2$.

(b) Length of the chord intercepted by the parabolay² = $4ax$ on

the line y = mx + c is : $\left(\frac{4}{m^2}\right) \sqrt{a(1 + m^2)(a - mc)}$.

Note: length of the focal chord making an angle α with the x -axis is 4a cosec² α .

~ 1 **Furmub**

ALC

\Marts\\$ **jugar** arced¹ g

(c) Parametric form : Equation of normal to the given parabola at its point P(t), is $y + tx = 2at + at^3$ **Note:** (i) (ii) $\overbrace{}^{1}$ Point of intersection of normals at t, & t, is/ $(a(t_1^2 + t_2^2 + t_1t_2 + 2), -at_1t_2 (t_1 + t_2)).$ If the normal to the parabola $y^2 = 4ax$ at the point t_1 , meets the parabola again at the point t_2 , then $t_2 = -\left(t_1 + \frac{2}{t_1}\right)$. (iii) If the normals to the parabola $y^2 = 4ax$ at the points t₁ & t, intersect again on the parabola at the point 't,' then $t_1t_2 = 2$; $t_3 = -(t_1 + t_2)$ and the line joining t_1 & t_2 passes through a fixed point $-2a$, 0). **13. PAIR OF TANGENTS: 14.** The equation of the pair of tangents which can be drawn from any point $P(x_1, y_1)$ outside the parabola to the parabola $y^2 = 4ax$ is given by : $SS = T^2$, where : $S = y^2 - 4ax$; $S = y₁² - 4ax$; $T = yy₁ - 2a (x + x₁).$ **CHORD OF CONTACT :** Equation of the chord of contact of tangents drawn from a point $P(x_1, y_1)$ is yy₁ = $2a(x + x_1)$ Remember that the area of the triangle formed by the tangents from $\sqrt[2]{\frac{y_1^2-4ax_1^{3/2}}{2}}$. Also note $\left[\frac{a}{\sqrt{2}}\right]$. that the chord of contact exists only if the point **P** 1s not inside.
¹15. **CHORD WITH A GIVEN MIDDLE POINT**: **IS. CHORD WITH A GIVEN MIDDLE POINf** : Equation of the chord of the parabola $y^2 = 4ax$ whose middle point is (x_1, y_1) is $y - y_1 = \frac{2a}{y_1}(x - x_1)$. ~----------------~~ ______________ ~E **Q£** (iii) If the normals to the parabola $y^2 = 4ax$ at the point t_2 intersect again on the parabola at the point $\frac{t_1 t_2 = 2$; $t_3 = -(t_1 + t_2)$ and the line joining t_1 & t_2 through a fixed point $(-2a, 0)$.
 PAIR OF

y\Engleh.p6 j 1 Road **PORTY / CPS/10-17 / MORE / SEE**

This reduced to $T = S$,

where $T = yy_1 - 2a(x + x_1)$ & $S_1 = y_1^2 - 4ax_1$.

16. DIAMETER:

• r

Book (Engl) English.p6
.

! **Jason**

Iota LIEE (Advanced) Li
I

6-171Kota rodr0612016-17
• in the state of the sta The locus of the middle points of a system of parallel chords of a Parabola is called a DIAMETER. Equation to the diameter of a parabola is y = *2a/m,* where m = slope of parallel chords.

17. CONORMAL POINTS:

Foot of the normals of three concurrent normals are called conormals point.

- (i) Algebraic sum of the slopes of three concurrent normals of parabola $v^2 = 4ax$ is zero.
- (ii) Sum of ordinates of the three conormal points on the parabola y^2 = 4ax is zero.
- (iii) Centroid of the triangle formed by three co-normal points lies on the axis of parabola.
- $\cancel{40}$ If 27 ak² < 4(h 2a)³ satisfied then three real and distinct normal are drawn from point (h, k) on parabola $y^2 = 4ax$. (ii) Sum of ordinates of the three conormal points on the $y^2 = 4ax$ is zero.

(iii) Centroid of the triangle formed by three co-normal point the axis of parabola.

SEC 16 27ak² < 4(h - 2a)³ satisfied then three real a
	- (v) If three normals are drawn from point (h, 0) on parabola $y^2 = 4ax$, then $h > 2a$ and one of the normal is axis of the parabola and other two are equally inclined to the axis of the parabola.

~ i **18. IMPORTANT HIGHLIGHTS :**

(a) If the tangent & normal at any point 'P' of the parabola intersect the axis at T & G '5' is the focus. In other words the tangent and the normal at

 $\frac{1}{2}$ a point P on the parabola are the bisectors of the angle between \overline{F}

the focal radius SP & the perpendicular from P on the directrix. From this we conclude that all rays emanating from S will become parallel to the axis of the parabola after reflection.

- **(b)** The portion of a tangent to a parabola cut off between the directrix & the curve subtends a right angle at the **focus .**
- **(e)** The tangents at the extremities of a focal chord intersect at right angles on the **directrix,** and a circle on any focal chord as diameter touches the directrix. Also a circle on any focal radii of a point P (at', 2at) as diameter touches the tangent at the

vertex and intercepts a chord of length $a\sqrt{1+t^2}$ on a normal at the point P.

- **(d)** Any tangent to a parabola & the perpendicular on it from the focus meet on the tangent at the vertex.
- **(e)** Semi latus rectum of the parabola $y^2 = 4ax$, is the harmonic mean between segments of any focal chord

Exercise the paradox

mean between segments of any for

i.e. $2a = \frac{2bc}{b+c}$ or $\frac{1}{b} + \frac{1}{c} = \frac{1}{a}$.

 $*$ $*$ Image of the focus lies on diretrix with respect to any tangent of parabola $v^2 = 4ax$. focus meet on the tangent at the vertex.

Semi latus rectum of the parabola $y^2 = 4ax$, is the harmoni

mean between segments of any focal chord

i.e. $2a = \frac{2bc}{b+c}$ or $\frac{1}{b} + \frac{1}{c} = \frac{1}{a}$.

Image of the focus lies o

2012 and 2013 11:25 11:25

and the fact of the con-

88

Point of intersection of major axis with directrix is called the

foot of the directrix (Z) $\left(\pm \frac{a}{a}, 0\right)$.

E

- **(d) Minor AxIs** : The y-axis intersects the ellipse in the points $B' = (0,-b)$ & $B = (0, b)$. The line segment B'B of length 2b (b < a) is called the **Minor AxIs** of the ellipse.
- **(e) Principal AxIs** : The major & minor axis together are called **Principal Axis** of the ellipse.
- **(f) Centre**: The point which bisects every chord of the conic drawn through it is called the **centre** of the conic. $C \equiv (0,0)$ the origin

is the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

- **(g) Diameter:** A chord of the conic which passes through the centre is called a **diameter** of the conic.
- **(h) Focal Chord:** A chord which passes through a focus is called a **focal chord,**
- **(I) Double Ordinate** : A chord perpendicular to the major axis is called a **double ordinate** with respect to major axis as diameter. Focal Chord : A chord which passes through a focus is called
a focal chord.
Double Ordinate : A chord perpendicular to the major axis is
called a double ordinate with respect to major axis as diameter.
Latus Rectum : The f
- **0) latus Rectum** : The focal chord perpendicular to the major axis is called the **latus rectum.**
	- (i) Length of latus rectum

$$
(LL') = \frac{2b^2}{a} = \frac{(\text{minor axis})^2}{\text{major axis}} = 2a(1 - e^2)
$$

(ii) Equation of latus rectum : $x = \pm ae$.

(iii) Ends of the latus rectum are $L\left(ae, \frac{b^2}{a}\right)$, $L\left(ae, -\frac{b^2}{a}\right)$,

$$
L_1\left(-ae, \frac{b^2}{a}\right) \text{ and } L_1\left(-ae, -\frac{b^2}{a}\right).
$$

(k) Focal radii: $SP = a -ex$ and $S'P = a + ex$ \Rightarrow SP + S 'P = 2a = Major axis.

$$
\textbf{(l)}\quad \textbf{Eccentricity: } e = \sqrt{1 - \frac{b^2}{a^2}}
$$

ack (Englisephines)

ander Matth (Spaat) i fandbook, Mohin)
.
.

J s\Formult

Lander₁

mole0612016-171Kota1.

IS IT Note LEE MAARCAR LA

i 1 t (Eng) **B** si Formula

 $\frac{1}{2}$

12003¹

Mathematics Handbook

4. POSITION OF A POINT W.R.T. AN ElliPSE:

The point $P(x_1, y_1)$ lies outside, inside or on the ellipse according as $\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 > 0$ or = 0.

5. AUXILUARY CIRCLE/ECCENTRIC ANGLE :

A circle described on major axis as diameter is called the **auxiliary** circle. Let Q be a point on the auxiliary circle $x^2 + y^2 = a^2$ such that QP produced is perpendicular to the x-axis then P & Q are called as the CORRESPONDING POINTS on

ghEnglah.p65 i Engl **1** s Formula

en'l-landbook_Maris\Fi

en Maths! Shaet!! Leader\

2016-171 Morph (ETAA Ameed) La
.
.

the ellipse & the auxiliary circle respectively.' θ ' is called the

ECCENTRIC ANGLE of the point P on the ellipse $(0 \le 0 < 2\pi)$.

Note that $\frac{l(PN)}{l(QN)} = \frac{b}{a} = \frac{\text{Semi minor axis}}{\text{Semi major axis}}$ is then P & Q are called as the

RRESPONDING POINTS on

ellipse & the auxiliary circle respectively.'9' is called the

CENTRIC ANGLE of the point P on the ellipse $(0 \le 0 < 2 \pi)$

e that $\frac{l(PN)}{l(QN)} = \frac{b}{a} = \frac{\text{Semi minor axis}}{\text{S$

Hence "If from each point of a circle perpendiculars are drawn upon a fixed diameter then the locus of the points dividing these perpendiculars in a given ratio is an ellipse of which the given circle is the auxiliary circle".

6. PARAMATRIC REPRESENTATION:

The equations $x = a \cos \theta$ & $y = b \sin \theta$ together represent the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ neadige in where θ is a parameter (eccentric angle). Note that if $P(\theta) \equiv (a \cos \theta, b \sin \theta)$ is on the ellipse then ; $Q(\theta) \equiv (a \cos \theta, a \sin \theta)$ is on the auxiliary circle. $\forall x, \theta$ = $\alpha \cos \theta$, $\alpha \sin \theta$ is on the duxing circle.

LINE AND AN FLLIPSE. 7.

The line y = mx + c meets the ellipse $\frac{x^2}{2} + \frac{y^2}{b^2} = 1$ in two real points, coincident or imaginary according as c^2 is \lt = or > $a^2m^2 + b^2$. Hence $y = mx + c$ is tangent to the ellipse $\frac{x^2}{2} + \frac{y^2}{12} = 1$ if $c^2 = a^2m^2 + b^2$. The equation to the chord of the ellipse joining two points with eccentric angles α & β is given by $\frac{x}{\alpha} \cos \frac{\alpha+\beta}{\alpha} + \frac{y}{\alpha} \sin \frac{\alpha+\beta}{\alpha} = \cos \frac{\alpha-\beta}{\alpha}$.

TANGENT TO THE ELLIPSE $\frac{x^2}{2} + \frac{y^2}{h^2} = 1$: 8.

(a) Point form:

Equation of tangent to the given ellipse at its point (x_1, y_1) is

 $\frac{XX_1}{a^2} + \frac{yy_1}{b^2} = 1$

(b) Slope form:

Equation of tangent to the given ellipse whose slope is 'm', is

$$
y = mx \pm \sqrt{a^2m^2 + b^2}
$$

Point of contact are

$$
\left(\frac{\text{ta}^2m}{\sqrt{a^2m^2+b^2}},\frac{\mp b^2}{\sqrt{a^2m^2+b^2}}\right)
$$

(c) Parametric form:

Equation of tangent to the given ellipse at its point

$$
(\text{a} \cos \theta, \text{b} \sin \theta), \text{ is } \frac{\text{x} \cos \theta}{\text{a}} + \frac{\text{y} \sin \theta}{\text{b}} = 1
$$

NORMAL TO THE ELLIPSE $\frac{x^2}{2} + \frac{y^2}{12} = 1$: 9.

(a) Point form: Equation of the normal to the given ellipse at

$$
(x_1, y_1)
$$
 is $\frac{a^2x}{x_1} - \frac{b^2y}{y_1} = a^2 - b^2 = a^2e^2$.

(b) Slope form : Equation of a normal to the given ellipse whose

slope is 'm' is y = mx $\mp \frac{(a^2-b^2)m}{\sqrt{m}}$ $\sqrt{a^2 + b^2} m^2$

(c) Parametric form : Equation of the normal to the given ellipse at the point $(\text{acos }\theta, \text{bsin }\theta)$ is ax. sec θ -by. cosec θ = $(a^2 - b^2)$.

10. CHORD OF CONTACT :

If PA and PB be the tangents from point $P(x_1,y_1)$ to the ellipse

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\,,
$$

then the equation of the chord of contact AB is $\frac{XX_1}{a^2} + \frac{yy_1}{b^2} = 1$ or $T = 0$ at (x_1, y_1)

11. PAIR OR TANGENTS:

If $P(x_1,y_1)$ be any point lies outside the ellipse

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,
$$

and a pair of tangents PA. PB can be drawn to it from P.

Then the equation of pair of tangents of PA and PB is $SS_1 = T^2$

12. DIRECTOR CIRCLE:

Locus of the point of intersection of the tangents which meet at right angles is called the **Director Circle**. The equation to this locus is $x^2 + y^2 = a^2 + b^2$ i.e. a circle whose centre is the centre of the ellipse α whose radius is the length of the line joining the ends of the major $\frac{L}{2}$ & minor axis.

English.pd . Erg\ Book

Machul

node0612016-17\Kota\JEEL

Math Shaet Handbook, Math Formula
|-
|-

hoose 0612016-17 Notel VA Autoscult Vantel Handschuch Handbook, Mattel Formule Book (Englished) 1665

96

Е

(d) Latus rectum :

(i) Equation: $x = \pm ae$

(ii) Length =
$$
\frac{2b^2}{a} = \frac{(Conjugate Axis)^2}{(Transverse Axis)} = 2a (e^2 - 1)
$$

= 2e(distance from focus to directrix)

(iii) Ends :
$$
\left(ae, \frac{b^2}{a} \right), \left(ae, \frac{-b^2}{a} \right)
$$
 ; $\left(-ae, \frac{b^2}{a} \right), \left(-ae, \frac{-b^2}{a} \right)$

(e) (i) Transverse Axis :

The line segment $A'A$ of length 2a in which the foci S' & S both lie is called the Transverse Axis of the Hyperbola.

(ii) Conjugate AxIs :

The line segment B'B between the two points $B' = (0, -b)$ & $B = (0, b)$ is called as the Conjugate Axis of the Hyperbola.

The Transverse Axis & the Conjugate Axis of the hyperbola are together called the Principal axis of the hyperbola.

(f) Focal Property:

The difference of the focal distances of any point on the hyperbola is constant and equal to transverse axis i.e. $\left| \begin{array}{c|c} |PS & -|PS' & | = 2a \\ \end{array} \right|$. The distance SS' = focal length. The line segment B'B between the two points B' \equiv (0, -
B \equiv (0, b) is called as the Conjugate Axis of the Hyper
The Transverse Axis & the Conjugate Axis of the hyper
are together called the Principal axis of the hype

(g) Focal distance :

Distance of any point $P(x, y)$ on hyperbola from foci $PS = ex - a$ & $PS' = ex + a$.

CONJUGATE HYPERBOLA:

Two hyperbolas such that transverse & conjugate axis of one hyperbola are respectively the conjugate & the transverse axis of the other are

called **Conjugate Hyperbolas** of each other. eg. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ &

 $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are conjugate hyperbolas of each other.

Morthematics Humathook

(c) Parametric form : Equation, moltsupE95Ftbmstaq given The equations $x = a \sec \theta \& y = b \tan \theta$ together represents the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where θ is a parameter. $R = 8QCD$ Note : Point of intersection of the tangents at θ , & θ , is POSITION OF A POINT 'P' w.r.t. A HYPERBOLA : 5. $cos 1$ \mathbf{e}^{\prime} The quantity $\frac{x_1^2}{a^2} - \frac{(y_1 + z_1)}{b^2} = 1$ is positive $\frac{z_1}{b^2} + \frac{z_2}{c^2}$ is positive $\frac{z_1}{c^2}$ is positive $\frac{z_1}{c^2}$ according as the points (x_1, y_1) lies within, upon or outside the curve.
 $\ddot{x} = \ddot{x} - \frac{1}{x_1} = \frac{1}{x_2}$ AIOHERRYH TO THE INVERBOLA \mathbf{z} LINE AND A HYPERBOLA : 6. slochsThe straightline y is move on's a secant la tangent or passel butside $\frac{1}{2}S^{2}S$ the hyperbolar $\frac{x_{0}^{2}}{a^{2}} = \frac{y^{2}}{b^{2}}S = 1$ according as $:\mathfrak{C}^{2} \cap \overline{\sigma_{1}}S \cap \overline{\sigma_{1}}S = 0^{2} - b^{2}$. nsvig Equationsofoa chard picthe hyperbola off + rego d doiotenglis two $\frac{\rho(\alpha^2+b^2)}{2} \cos \frac{\pi \alpha}{2} \sin \frac{\pi \alpha}{2} \sin \frac{\pi \alpha}{2} \sin \frac{\pi \alpha}{2} \sin \frac{\pi \alpha}{2}$ TANGENT TO THE HYPERBOLA $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 - \frac{1}{2}$ 7. (a) Point form : Equation of the langent to the given hyperbola (c) Parametriq for $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (c) (c) $\frac{1}{2}$ (c) (c) (c) (c) $\frac{1}{2}$ (c) (c) (c) (c) (c) (c Note: In general two tangents can be drawn from an external point (x, y) to the hyperbola and they are $y_1 - y_1 = y_2 = x$, $(x - x)$ & $y - y_1 = m_2 (x - x_2)$, where m_1 & m are roots of the equation
 $(x_1^2 - a^2) m^2 - 2x_1y_1 m + y_1^2 + b^2 = 0$. If $D < 0$, then no The locus of the intersection of tangents which are right and the hyperbola. The angles is known as the **Director Circle** in the hyperbola. The director circle $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{$ shrip soli given hyperbola is $y = mx + \sqrt{a^2m^2 + b^2}$. Point of contact are is zero & it reduces to a point betwee at the rest in this case the centre is the only point from synches and the attrights at right Note that there are two parallel tangents having the same slope m

(c) Parametric form : Equation of the tangent to the given hyperbola at the point (a sec θ , b tan θ) is $\frac{x \sec \theta}{1} - \frac{y \tan \theta}{1} = 1$ a b **Note** : Point of intersection of the tangents at θ_1 & θ_2 is $\cos\left(\frac{1}{2}\right)$ $x = a \frac{\cos \left(\frac{y_1 + \theta_2}{2}\right)}{\cos \left(\frac{\theta_1 + \theta_2}{2}\right)}, y = b \tan \left(\frac{\theta_1 + \theta_2}{2}\right)$ $\frac{1}{2}$, $\frac{1}{2}$ **8.** NORMAL TO THE HYPERBOLA $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$: **(a) Point form:** Equation of the normal to the given hyperbola at the point P (x_1, y_1) on it is $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2 = a^2e^2$. **(b) Slope form:** The equation of normal of slope m to the given foot of normal are hyperbola is $y = mx \pm \frac{m(a^2 + b^2)}{\sqrt{(a^2 - m^2b^2)}}$
 $\left(\pm \frac{a^2}{\sqrt{(a^2 - m^2b^2)}} + \frac{mb^2}{\sqrt{(a^2 - m^2b^2)}}\right)$ **(c) Parametric form** :The equation of the normal at the point P (a sec θ , b tan θ) to the given hyperbola is at the point P (x_1, y_1) on it is $\frac{a^2 x}{x_1} + \frac{b^2 y}{y_1} = a^2 + b^2 =$
 (b) Slope form: The equation of normal of slope m to the

hyperbola is $y = mx \pm \frac{m(a^2 + b^2)}{\sqrt{(a^2 - m^2b^2)}}$ foot of normal
 $\left(\pm \frac{a^2}{\sqrt{(a^2 - m^2b^2$

> $\frac{ax}{a} + \frac{by}{b} = a^2 + b^2 = a^2 e^2$. $sec\theta$ $tan\theta$

9. **DIRECTOR CIRCLE :**

The locus of the intersection of tangents which are at right equation to the director circle is: $x^2 + y^2 = a^2 - b^2$.

angles is known as the **Director Circle** of the hyperbola. The equation to the director circle is $x^2 + y^2 = a^2 - b^2$.
If $b^2 < a^2$ this circle is real; if $b^2 = a^2$ the radius of the circle is zero & it reduces to a point If $b^2 < a^2$ this circle is real; if $b^2 = a^2$ the radius of the circle is zero & it reduces to a point circle at the origin. **In** this case " the centre is the only point from which the tangents at right angles can be drawn to the curve.

100

If $b^2 > a^2$, the radius of the circle is imaginary, so that there is no such circle & so no tangents at right angle can be drawn to the curve.

10. CHORD OF CONTACT :

If PA and PB be the tangents from point $P(x_1,y_1)$ to the Hyperbola

 $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$, then the equation of the chord of contact AB is a^2 b^2

 $\frac{xx_1}{2^2} - \frac{yy_1}{b^2} = 1$ or T = 0 at (x_1,y_1)

11. PAIR OR TANGENTS:

 $2, 2$ If P(x₁,y₁) be any point lies outside the Hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and a pair of tangents PA, PBcan be drawn to it from P. Then the equation of pair of tangents of PA and PB is $SS_1 = T^2$

a pair of tangents PA, PB can be drawn to it from P. Then the e
of pair of tangents of PA and PB is
$$
SS_1 = T^2
$$

where $S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$, $T = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1$
i.e. $\left(\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1\right) \left(\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1\right) = \left(\frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1\right)^2$
EQUATION OF CHORD WITH MID POINT (x_1, y_1) :

12. EQUATION OF CHORD WITH MID POINT (x_1, y_1) **:**

The equation of the chord of the ellipse $\frac{x^2}{2^2} - \frac{y^2}{h^2} = 1$,

whose mid-point be
$$
(x_1, y_1)
$$
 is $T = S_1$
\n
$$
x \text{ where } T = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1, S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1
$$

i.e.
$$
\left(\frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1\right) = \left(\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1\right)
$$

13. ASYMPTOTES:

Definition : If the length of the perpendicular let fall from a point on a hyperbola to a straight line tends to zero as the point on the hyperbola moves to infinity along the hyperbola, then the $\frac{1}{2}$ straight line is called the **Asymptote of the Hyperbola.** \overline{F}

Mantiennaties Hamethook

straight line is called the **Asymptote of the Hyperbola**.

102

Note:

- **(i)** A polynomial of degree one with no constant term is called an odd linear function. i.e. $f(x) = ax$, $a \ne 0$
- **(ij)** There are two polynomial functions, satisfying the relation; f(x). $f(1/x) = f(x) + f(1/x)$. They are:
	- (a) $f(x) = x^n + 1$ &
	- **(b)** $f(x) = 1 x^n$, where n is a positive integer.

(iii) Domain of a polynomial function is R

(iv) Range of odd degree polynomial is R whereas range of an even degree polynomial is never R.

(b) Algebraic function :

A function 'f' is called an algebraic function if it can be constructed using algebraic operations (such as addition, subtraction, multiplication, division, and taking radicals) starting with polynomials. Expression of the form $y = f(x) = \frac{g(x)}{h(x)}$

Subtraction, multiplication, division, and taking radicals) start

with polynomials.

C) Rational function :

A rational function is a function of the form $y = f(x) = \frac{g(x)}{h(x)}$

(c) Rational function :

g(x) A rational function is a function of the form $y = f(x) = \frac{f(x)}{h(x)}$,

where $q(x)$ & h(x) are polynomials & h(x) \neq 0, **Domain:** $R-\{x \mid h(x)=0\}$

Any rational function is automatically an algebraic function.

(d) Exponential and Logarithmic Function :

A function $f(x) = a^x(a > 0)$, $a \ne 1$, $x \in R$ is called an exponential function. The inverse of the exponential function is called the logarithmic function, i.e. $g(x) = log_x x$.

Note that $f(x)$ & $g(x)$ are inverse of each other & their graphs are as shown. (Functions are mirror image of each other about the line $y = x$)

1956 £79398 Book Engli

j ;

Leader \ Maths\ Sheet\+

2016-17VKon VEEN Omered VI
.
.

Manufacture (2016-171Koun-UEE)Advanced(14andari Matrix Sheet) Hombook Matrix Formula Book (Engl/English-p65

node(A) 2016-171 Kota \JEE(Adameed) Laadrin Mette \Sheri \Fandtook_Marte) Formula Book_Engl\English_265

E

"

4. EQUAL OR IDENTICAL FUNCTION :

Two function f & g are said to be equal if :

 (a) The domain of $f =$ the domain of q

(b) The range of $f = range of g$ and

(c) $f(x) = g(x)$, for every x belonging to their common domain (i.e. should have the same graph)

5. ALGEBRAIC OPERATIONS ON FUNCTIONS:

If f & q are real valued functions of x with domain set A, B respectively, $f + g$, $f - g$, $(f g)$ & (f/g) as follows:

(a) $(f \pm g)(x) = f(x) \pm g(x)$ domain in each case is $A \cap B$

(b) $(f, g)(x) = f(x).g(x)$ domain is $A \cap B$

(c) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ domain $A \cap B - \{x \mid g(x) = 0\}$

6. CLASSIFICATION OF FUNCTIONS :

(a) One-One function (Injective mapping) :

A function $f : A \rightarrow B$ is said to be a one-one function or injective mapping if different elements of A have different i images in B. Thus for $x_1, x_2 \in A$ & $f(x_1)$, $f(x_2) \in B$, $f(x_1) = f(x_2)$ \Leftrightarrow x₁ = x₂ or x₁ \neq x₂ \Leftrightarrow $f(x_1) \neq f(x_2)$. (c) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ domain $A \cap B - \{x \mid g(x) = 0\}$
CLASSIFICATION OF FUNCTIONS :
(a) One-One function (Injective mapping) :
A function $f : A \rightarrow B$ is said to be a one-one function injective mapping if different eleme

- **Note:**
 (i) Any continuous function which is entirely increasing

or decreasing in whole domain is one-one.
- **(ii)** If a function is one-ore, any line parallel to x-axis cuts the graph of the function at atmost one point **(b) Many-one function**:

A function $f : A \rightarrow B$ is said to be a many one function if two or more elements of A have the same f image in B.

Thus $f : A \to B$ is many one if $\exists x_1, x_2 \in A$, $f(x_1) = f(x_2)$
but $x_1 \neq x_2$ $\sum_{i=1}^{8}$ but $x_1 \neq x_2$

Note: If a continuous function has logal maximum or local minimum, then f(x) is many-one because atleast one line parallel to x-axis will intersect the graph of function atleast twice. Total number of the nonthenolder \mathbf{r} is the number of \mathbf{r} = number of one-one functions: + number of many-ohe(function $\min(\mathbf{c}) \cdot \mathbf{C}$ (x) = q(x). for every (surjective) very solution (x) = q(x) If range = co-doman , then $f(x)$ is onto. ALGEBRAIC OPERATIONS ON FUNCTIONS only $5.$ 8. A test principle of the Buck that there exists atleast one element in co-domain which is not the infage of any element in domain. (a) $(f \pm g)(x) = f(x) \pm g(x)$ domain in entri is $f(x)$ in $g(x)$ Note: (b) $(f, g)(x) = f(x), g(x)$ domain is $A \cap B$ (i) If 'f' is both injective & surjective, then it is called a **Bijective** (0 mapping. The bijective functions are also named as invertible, non singular or biuniform functions. (ii) If a set A contains n distinct elements then the number of different functions defined from $A \rightarrow A$, is n^n . $\&$ out of it n! are one one and rest are many one. A function $f: A \rightarrow B$ is said to be a one-one function or
injective mapping if **eimonylog 8.13.** $B: A$ (ii) e different $\left(\sqrt{y}\right) = \left(\sqrt{y}\right)$, $\left(\frac{1}{2}\right)$ (a) Of even degree, then it will neither be injective nor surjective. $x = x_0$ or $x_1 \neq x_2$ or $x = x_1$ (b) Of odd degree, then it will always be surjective, no gnizos soni vistil general comment can be given on its injectivity. **COMPOSITE OF UNIFORMLY & NON-UNIFORMLY** 7. sti al **DEFINED FUNCTION** : 5.970-9.10 al noitonut 6 ft (ii) Let $f : A \rightarrow B \& g : B \rightarrow C$ be two functions. Then the function gof : $A \rightarrow C$ defined by (gof) (x) = g(f(x)) $\forall x \in A$ is called the composite of the two functions f & got bica of 8 + A. I mortanul A. Hence in gof(x) the range of 'f' must be a subset of the domain A 1 2007 $\begin{array}{ccc} \n\begin{array}{c}\n\sqrt{1} & \n\end{array} & \n\begin{array}{c}\n\text{of } & \n\end{array} & \n\begin{array}{c}\n\text{x} & \n\end{array} & \n\end{array}$ xx 141

rook (6016-17) Kota Justice (united Authority Maria Steam Viscolo Authority Pook and Justice 1900 About

110

Properties of composite functions:

- (a) In general composite of functions is not commutative i.e. $qof \neq f \circ q$.
- **(b)** The composite of functions is associative i.e. if f, g, h are three functions such that f o(goh) & (f og)oh are defined, then f o(goh) = $(f$ og)oh.
- **(c)** The composite of two bijections is a bijection i.e. if f & g are two bijections such that gof is defined, then gof is also a bijection.
- **(d)** If gof is one-one function then f is one-one but g may not be **one-one.**

8. HOMOGENEOUS FUNCTIONS:

A function is said to be homogeneous with respect to any set of variables when each of its terms is of the same degree with respect to those variables.

For examples $5x^2 + 3y^2 - xy$ is homogenous in x & y. Symbolically if, $f(tx, ty) = tⁿ f(x, y)$, then $f(x, y)$ is homogeneous function of degree n. to those variables.

For examples $5x^2 + 3y^2 - xy$ is homogenous in x & y. Symb

if, $f(tx, ty) = t^n f(x, y)$, then $f(x, y)$ is homogeneous funct

degree n.
 BOUNDED FUNCTION :

A function is said to be bounded if $|f(x)| \le M$, where

9. BOUNDED FUNCTION:

N English.p
J !

~ I

A function is said to be bounded if $|f(x)| \leq M$, where M is a finite quantity.

$\frac{1}{2}$ 10. **IMPLICIT & EXPLICIT FUNCTION:**

A function defined by an equation not solved for the dependent variable is called an **implicit function**. *e.g.* the equation $x^3 + y^3 = 1$ defines y as an implicit function. If y has been expressed in terms of x alone then it is called an **Explicit function.**

11. INVERSE OF A FUNCTION:

Let f: $A \rightarrow B$ be a one-one & onto function, then their exists a unique function g : $B \rightarrow A$ such that $f(x) = y \Leftrightarrow g(y) = x$, $\forall x \in A \& y \in B$. Then g is said to be inverse of f.
Thus $g = f^{-1} : B \rightarrow A = \{(f(x), x)\} | (x, f(x)) \in f\}$

ghEnglish.p6 ~ **3** s\Formula
|

etti Handbook, Matisti
.

15 Sheet \ **i** Madisi lander).

nodel5\201617\Kom\.E

Properties of Inverse function :

- (a) The inverse of a bijection is unique.
- **(b)** If $f : A \rightarrow B$ is a bijection $\& g : B \rightarrow A$ is the inverse of f, then fog = I_B and gof = I_A , where I_A & I_B are identity functions on the sets $A \& B$ respectively. If fof $= I$, then f is inverse of itself.
- (c) The inverse of a bijection is also a bijection.
- **(d)** If f & g are two bijections $f : A \rightarrow B$, $g : B \rightarrow C$ & gof exist, then the inverse of gof also exists and $(qof)^{-1} = f^{-1}og^{-1}$.
- **(e)** Since $f(a) = b$ if and only if $f^{-1}(b) = a$, the point (a, b) is on the graph of 'f' if and only if the point (b, a) is on the graph of f^{-1} . But we get the point (b, a) from (a, b) by reflecting about the line $y = x$.

Note:

- **(I)** A function may neither be odd nor even.
- **(II)** Inverse of an even function is not defined, as it is many-one function.
- **(iii)** Every even function is symmetric about the y-axis & every odd function is symmetric about the origin.
- **(Iv)** Every function which has '-x' in it's domain whenever 'x' is in it's domain, can be expressed as the sum of an even & an odd function.

e.g.
$$
f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}
$$

- **(v)** The only function which is defined on the entire number line & even and odd at the same time is $f(x) = 0$
- **(vi)** If fix) and g(x) both are even or both are odd then the function $f(x)$. $g(x)$, will be even but if any one of them is odd & other is even, then f.q will be odd. EVEN
 EVEN ODD

(v) The only function which is defined on the entire number line

even and odd at the same time is $f(x) = 0$

(vi) If $f(x)$ and $g(x)$ both are even or both are odd then the function
 $f(x) \cdot g(x)$. will be e

13_ **PERIODIC FUNCTION:**

A function fix) is called periodic if there exists a positive number $T(T > 0)$ called the period of the function such that $f(x + T) = f(x)$, for all values of x within the domain of fix).

Note :

- **(i)** Inverse of a periodic function does not exisl.
- **(il)** Every constant function is periodic, with no fundamental period.
- **(iii)** If fix) has a period T & g(x) also has a period T then it does not mean that $f(x) + g(x)$ must have a period T. e.g. $f(x) = \sin x \cdot 1 + \cos x \cdot 1$.

 $f(x)$ If $f(x)$ has period p and $g(x)$ has period q, then period of $f(x) + g(x)$ will be LCM of p & q provided $f(x)$ & $g(x)$ are non interchangeable. If f(x) & g(x) can be interchanged by adding a least positive number r, then smaller of LCM & r will be the period.

(v) If f(x) has period p, then $\frac{1}{f(x)}$ and $\sqrt{f(x)}$ also has a period p.

- (vi) If f(x) has period T then $f(ax + b)$ has a period T/a (a > 0).
- **(vii)** I sinx I , I cosx I , I tanx I , I cotx I , I secx I & I cosecx I are periodic function with period π .

(viii) sinⁿx, cosⁿx, secⁿx, cosecⁿx, are periodic function with period 2π when 'n' is odd or π when n is even.

 (ix) tanⁿx, cosⁿx are periodic function with period π . (ix) $\tan^n x$, $\cos^n x$ are periodic function with period π .
 GENERAL:

If x, y are independent variables, then :

(a) $f(xy) = f(x) + f(y) \Rightarrow f(x) = k\ln x$

(b) $f(xy) = f(x)$. $f(y) \Rightarrow f(x) = x^n$, $n \in R$ or $f(x) = 0$

(c) $f(x + y) = f(x)$. $f(y) \Rightarrow f$

14. GENERAL :

If x, y are independent variables, then :

(a) $f(xy) = f(x) + f(y) \Rightarrow f(x) = k\ln x$

(b) $f(xy) = f(x)$. $f(y) \Rightarrow f(x) = x^n$, $n \in R$ or $f(x) = 0$

(c) $f(x + y) = f(x)$. $f(y) \Rightarrow f(x) = a^{kx}$ or $f(x) = 0$

(d) $f(x + y) = f(x) + f(y) \Rightarrow f(x) = kx$, where k is a constant.

15. SOME BASIC FUNCTION & THEIR GRAPH :

(a) $y = x^{2n}$, where $n \in N$

(b) $y = x^{2n + 1}$, where $n \in N$

node0613016-171Kma\JEEIAdvanced()Lander\Matit2\Sheet\Handtook_Matis1Formula Book (English p65 E

nod(10): 2016-1714.ob/JEE(Adanced) Lawan/Matin1Shee/Hitlanook_Matin1Formula_Bush_Engl/English.p65

E

16. TRANSFORMATION OF GRAPH:

(a) when $f(x)$ transforms to $f(x) + k$ if $k > 0$ then shift graph of $f(x)$ upward through k if $k < 0$ then shift graph of $f(x)$ downward through k **Examples :**

(b) $f(x)$ transforms to $f(x + k)$: if $k > 0$ then shift graph of $f(x)$ through k towards left. Supply $\int f(x)$ transforms to $f(x + k)$:

if $k > 0$ then shift graph of $f(x)$ through k towards left

if $k < 0$ then shift graph of $f(x)$ through k towards right
 Examples:

if $k < 0$ then shift graph of $f(x)$ through k towards right.

: Book (Engl\English.pG

sycamula

een Handbook_MattanF

In Marks Sheen I Leader?

|
|-
| hoden in 1916-17 | Moda | AEE**A Adversal**)
|-
|

(c) $f(x)$ transforms to $kf(x)$:

if $k > 1$ then stretch graph of $f(x)$ k times along y-axis if $0 < k < 1$ then shrink graph of $f(x)$, k times along v-axis **Examples:**

(d) $f(x)$ transforms to $f(kx)$: if $k > 1$ then shrink graph of $f(x)$, 'k' times along x-axis if $0 < k < 1$ then stretch graph of $f(x)$, 'k' times along x-axis **Examples:**

an Englishup65 i Engl **Book** s\Formula ent Handbook_MadretF
|
| Sheet \ Machel **Leader** DIG-TTYKoa L**EEN.darrea**YLe
.

122

123

mode(IG) 2016 171 Kota LIFEEAdvanced LLawen Utamin Sheet Hundreak, Marin Formula Book (English Lodg)

E

node/0612015-1733Kora3/EEIjAchanced91ceode13Matths/Sheet31Handbook_Matths/Formula-Book_Eng/LEngths.p65 E

(vi) $y = sec^{-1}$ (sec x), y is periodic with period 2π

P-3 :

(I) $\csc^{-1} x = \sin^{-1} \frac{1}{x}; \quad x \leq -1, x \geq 1$

- (ii) $sec^{-1} x = cos^{-1} \frac{1}{x}$; $x \le -1, x \ge 1$
- **(iii)** $\cot^{-1}x = \tan^{-1} \frac{1}{x}$ $x > 0$ x

$$
= \pi + \tan^{-1} \frac{1}{x} \quad ; \quad x < 0
$$

P-4 :

(i) $\sin^{-1}(-x) = -\sin^{-1} x$, $-1 \le x \le 1$ **(ii)** $\tan^{-1}(-x) = -\tan^{-1} x$, $x \in R$ **(iii)** $\cos^{-1}(-x) = \pi - \cos^{-1} x$, $-1 \le x \le 1$ ght (expanded t (Eng) Book Formula ee'l Handbook, Maritsl^ei
I ~ i Leader). mode/16/19/16-17 ነ Kota \JEEIA.dvanced\\L
-
-

LLEN

Mathematics Handbook

(iv) $cot^{-1}(-x) = \pi - cot^{-1}x$. $x \in R$ (v) $sec^{-1}(-x) = \pi - sec^{-1}x$, $x < -1$ or $x > 1$ (vi) $\csc^{-1}(-x) = -\csc^{-1} x$, $x \le -1$ or $x \ge 1$ $P-5:$ (i) $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ $-1 \le x \le 1$ (ii) $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ $x \in R$ (iii) $\csc^{-1} x + \sec^{-1} x = \frac{\pi}{2} \quad |x| \ge 1$ $P-6:$ (i) $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$ where $x > 0$, $y > 0$ & $xy < 1$ $=\pi + \tan^{-1} \frac{x + y}{1 - xy}$, where $x > 0$, $y > 0$ & $xy > 1$ $=\frac{\pi}{2}$, where x > 0, y > 0 & xy = 1 (ii) $\tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy}$ where $x > 0$, $y > 0$ (iii) $\sin^{-1} x + \sin^{-1} y = \sin^{-1} [x \sqrt{1 - y^2} + y \sqrt{1 - x^2}]$ where $x > 0$, $y > 0$ & $(x^2 + y^2) < 1$ Note that : $x^2 + y^2 < 1 \Rightarrow 0 < \sin^{-1} x + \sin^{-1} y < \frac{\pi}{2}$ (iv) $\sin^{-1} x + \sin^{-1} y = \pi - \sin^{-1} [x\sqrt{1-y^2} + y\sqrt{1-x^2}]$. where $x > 0$, $y > 0$ & $x^2 + y^2 > 1$ Note that : $x^2 + y^2 > 1 \Rightarrow \frac{\pi}{2} < \sin^{-1} x + \sin^{-1} y < \pi$ (v) $\sin^{-1} x - \sin^{-1} y = \sin^{-1} [x \sqrt{1 - y^2} - y \sqrt{1 - x^2}]$ where $x > 0, y > 0$ (vi) $\cos^{-1}x + \cos^{-1}y = \cos^{-1}[xy - \sqrt{1-x^2}\sqrt{1-y^2}]$, where $x > 0$, $y > 0$ (viii) $\cos^{-1} x - \cos^{-1} y = \begin{cases} \cos^{-1} (xy + \sqrt{1 - x^2} \sqrt{1 - y^2}) & ; x < y, x, y > 0 \\ -\cos^{-1} (xy + \sqrt{1 - x^2} \sqrt{1 - y^2}) & ; x > y, x, y > 0 \end{cases}$

127

viii)
$$
\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\left[\frac{x + y + z - xyz}{1 - xy - yz - zx}\right]
$$

if $x > 0$, $y > 0$, $z > 0$ & $x + yz + zx < 1$

Note: In the above results x & v are taken positive. In case if these are given as negative, we first apply P-4 and then use above results.

3. **SIMPLIFIED INVERSE TRIGONOMETRIC FUNCTIONS:**

model76\2016-171Kota\LEEEAdvanced\Leader\Mattle\Sheet\Handbook_Mattle\Formula_Book_ErnsNEnstah.p65

E

Mathematics Handbook

(g) $cos^{-1}(2x^2 - 1)$ = $\begin{cases} 2\cos^{-1} x & 0 \le x \le 1 \\ 2\pi - 2\cos^{-1} x & -1 \le x \le 0 \end{cases}$

 \mathcal{U}_L

129

1. **DEFINITION**:

Let f(x) be defined on an open interval about 'a' except possibly at 'a' itself. If f(x) gets arbitrarily close to L (a finite number) for all x sufficiently close to 'a' we say that $f(x)$ approaches the limit L as x approaches 'a' and we write $Lim f(x) = L$ and say "the limit of f(x), $x \rightarrow a$ as x approaches a, equals L".

2. LEFT HAND LIMIT **& mGtfTHAND LIMIT OF A FUNCTION:**

Left hand limit (LHL) = $\lim_{x\to a^{-}} f(x) = \lim_{h\to 0} f(a-h), h > 0.$ $x \rightarrow a^-$

Right hand limit $(RHL) = Lim f(x) = Lim f(a + h), h > 0.$ x--ta [~]**h O**

Limit of a function $f(x)$ **is said to exist as,** $x \rightarrow a$ **w' an** $Lim f(x) = Lim f(x) = Finite quantity.$ Left hand limit (LHL) = $\lim_{x \to a^{-}} f(x) = \lim_{h \to 0} f(a - h), h > 0.$

Right hand limit (RHL) = $\lim_{x \to a^{+}} f(x) = \lim_{h \to 0} f(a + h), h > 0.$
 Limit of a function f(x) is said to exist as, $x \to a$
 Lim f(x) = Lim f(x) = Finite quantity.

Important note:

In Lim f(x), $x \rightarrow a$ **necessarily implies** $x \neq a$ **.** That is while

evaluating limit at $x = a$, we are not concerned with the value of the function at $x = a$. In fact the function may or may not be defined at $x = a$.

Also it is necessary to note that if $f(x)$ is defined only on one side of $x = a'$, one sided limits are good enough to establish the existence of limits, & if f(x) is defined on either side of 'a' both sided limits are $\begin{array}{|c|c|c|c|c|}\n\hline\n\text{to be considered.} & & & & \end{array}$ **3. FUNDAMENfAL THEOREMS ON UMITS:** Let $\lim_{x\to a} f(x) = l$ & $\lim_{x\to a} g(x) = m$. If l & m exists finitely then: **(a)** Sum rule : $\lim_{x \to a} [f(x) + g(x)] = l + m$ **(b)** Difference rule : $\lim_{x\to a} [f(x)-g(x)]=1-m$ **(c)** Product rule: $\lim_{x\to a} f(x).g(x) = l.m$ **(d)** Quotient rule: $\lim_{t \to \infty} \frac{f(x)}{x} = \frac{l}{n}$, provided m $\neq 0$ $x \rightarrow a$ g(x) m (e) Constant multiple rule : $\lim_{x\to a} kf(x) = k \lim_{x\to a} f(x)$; where k is constant. **(f)** Power rule : If m and n are integers, then $\lim_{x\to a} [f(x)]^{m/n} = l^{m/n}$ provided $l^{m/n}$ is a real number. **(e)** Constant multiple rule : Lim kf(x) = k Lim f(x); where k is constant.
 (f) Power rule : If m and n are integers, then Lim $[f(x)]^{m/n} = t^{m/n}$

provided $t^{m/n}$ is a real number.
 (g) Lim f[g(x)] = f(Lim g(x)) = f(m) $x = m$. **For example:** $\lim_{x\to a} \ell n(f(x)) = \ell n[\lim_{x\to a} f(x)]$; provided ℓnx is defined at $x=Lim f(t)$. **INDETERMINATE FORMS:** $\frac{0}{0}$, $\frac{\infty}{\infty}$, $\infty - \infty$, $0 \times \infty$, 1^{∞} , 0^0 , ∞^0 . **Note:**

We cannot plot ∞ on the paper. Infinity (∞) is a symbol & not a Figure 1. It does not obey the laws of elementary algebra, Ξ

Book (Engl) English po

modeO612016-17\Kota\JEEM

6.

LIMIT OF TRIGONOMETRIC FUNCTIONS -

 $\lim_{x\to 0} \frac{\sin x}{x} = 1 = \lim_{x\to 0} \frac{\tan x}{x} = \lim_{x\to 0} \frac{\tan^{-1} x}{x} = \lim_{x\to 0} \frac{\sin^{-1} x}{x}$ [where x is measured in radiansl

(a) If $\lim_{x \to a} f(x) = 0$, then $\lim_{x \to a} \frac{\sin f(x)}{f(x)} = 1$.

(b) Using substitution $\lim_{x \to a} f(x) = \lim_{h \to 0} f(a-h)$ or $\lim_{h \to 0} f(a+h)$ i.e.

by substituting x by $a - h$ or $a + h$

7. LIMIT OF EXPONENTIAL FUNCTIONS:

(a) $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a(a > 0)$ In particular $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$.

In general if $\lim_{x\to a} f(x) = 0$, then $\lim_{x\to a} \frac{a^{f(x)} - 1}{f(x)} = \ln a$, $a > 0$

(b)
$$
\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1
$$

(c) $\lim_{x\to 0} (1+x)^{1/x} = e = \lim_{x\to 0} (1+\frac{1}{x})^x$

(Note: The base and exponent depends on the same variable.)

In general, if $Limf(x) = 0$, then $Lim(1 + f(x))^{1/f(x)} = e$

(d) If $\lim_{x\to a} f(x) = 1$ and $\lim_{x\to a} \phi(x) = \infty$,

then $\lim_{x\to a} [f(x)]^{\phi(x)} = e^k$ where $k = \lim_{x\to a} \phi(x) [f(x)-1]$

(e) If $\lim_{x\to a} f(x) = A > 0$ & $\lim_{x\to a} \phi(x) = B$ (a finite quantity),

then $\lim_{x\to a}[f(x)]^{\phi(x)} = e^{B\ln A} = A^B$

LIMIT USING SERIES EXPANSION : 8.

Expansion of function like binomial expansion, exponential & logarithmic expansion, expansion of sinx, cosx, tanx should be remembered by heart which are given below:

f(x) has non removable oscillatory type discontinuity at $x = 0$ Note: In case of non-removable (finite type) discontinuity the non-negative difference between the value of the RHL at $x = a$ & LHL at x = a is called THE JUMP OF DISCONTINUITY. A function having a finite number of jumps in a given interval I is called a PIECE WISE CONTINUOUS or SECTIONALLY CONTINUOUS function in this interval.

THE INTERMEDIATE VALUE THEOREM : 5.

Suppose f(x) is continuous on an interval I and a and b are any two points of I. Then if y_n is a number between f(a) and f(b), their exists a number c between a and b such that $f(c) = y_0$

rodeDS\2016-17\Kote\uEE(Advanced)\Leader\Maths\Shee\\Handbook_Maths\Formula_Book_Engl\English.p65

Ė

The function f, being continuous on [a,b] takes on every value between f(a) and f(b)

Note that a function f which is continuous in [a,b] possesses the following properties :

- (a) If f(a) & f(b) posses opposite signs, then there exists at least one solution of the equation $f(x) = 0$ in the open interval (a,b) .
- (b) If K is any real number between f(a) & f(b), then there exists at least one solution of the equation $f(x) = K$ in the open interval (a,b).

I: **D1FFERENTIABIU1Y**

1. INTRODUCTION:

The derivative of a function 'f' is function ; this function is denoted by symbols such as

$$
f(x), \frac{df}{dx}, \frac{d}{dx}f(x)
$$
 or $\frac{df(x)}{dx}$

The derivative evaluated at a point a, can be written as :

$$
f'(a)
$$
, $\left[\frac{df(x)}{dx} \right]_{x=a}$, $f'(x)_{x=a}$, etc.

2. RIGHT HAND & LEFT HAND DERIVATIVES .:

(a) Right hand derivative: . ^I

The right hand derivative of $f(x)$ at $x = a$ denoted by $f'(a^+)$ is defined as: **Right hand derivative :**

The right hand derivative of f(x) at $x = a$ denoted by f'(a⁺) i

defined as :
 $f'(a^+) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$, provided the limit exists & is finite
 Left hand derivative :

 $f'(a^+) = Lim \frac{f(a + h) - f(a)}{h}$, provided the limit exists & is finite. $h\rightarrow 0$ h

(b) Left hand derivative:

The left hand derivative of f(x) at $x = a$ denoted by $f(a^-)$ is defined

as: $f'(a^-) = Lim \frac{f(a-h)-f(a)}{h}$, provided the limit exists & is finite. $h \rightarrow 0$ -h as : $f'(a^-) = \lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$, provided the limit exists & is finite.
 (c) Derivability of function at a point :

If $f(a^+) = f(a^-) =$ finite quantity, then $f(x)$ is said to be **derivable or differentiable at** $x = a$. In such case $f(a^+) = f(a) = f(a)$ & it is called derivative or differential coefficient of $f(x)$ at $x = a$.
 Note: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

(i) All polynomial, trigonometric, inverse trigonometric, logarithmic and exponential function are continuous and differentiable in their domains, except at end points.

016171Kota note(612016 CAREER INSTITUTE

Mathematlca Handbook

. Book (Englisipality) p66

s\Formula

Shawri Mazinek Lander\

aati Handbook_Madia\F

IS-17 \Koa \EERAderred\L
IS-17

nada(612016-17

(e) Vertical tangent :

If for $y = f(x)$,

 $f'(a^+) \rightarrow \infty$ and $f'(a^-) \rightarrow \infty$ or $f'(a^+) \rightarrow -\infty$ and $f'(a^-) \rightarrow -\infty$ then at $x = a$, $y = f(x)$ has vertical tangent but $f(x)$ is not differentiable at $x = a$

4. DERWABIUTY OVER AN INTERVAL :

- **(a)** fIx) is said to be derivable over an open interval (a, b) if it is derivable at each & every point of the open interval (a, b).
- **(b)** $f(x)$ is said to be derivable over the closed interval [a, b] if :
	- (i) $f(x)$ is derivable in (a, b) &
	- (ii) for the points a and b, f(a⁺) & f(b⁻) exist.

Note:

- (i) If f(x) is differentiable at $x = a \& g(x)$ is not differentiable at x $=a$, then the product function $F(x)=f(x).g(x)$ can still be differentiable at $x = a$. (ii) for the points a and b, $f(a^+) \& f(b^-)$ exist.

e:

If f(x) is differentiable at $x = a \& g(x)$ is not differentiable at x

=a, then the product function $F(x)=f(x).g(x)$ can still be

differentiable at $x = a$.

If f(x) & g(x) bo
- **(ii)** If $f(x) \& g(x)$ both are not differentiable at $x = a$ then the product function; $F(x)=f(x).g(x)$ can still be differentiable at $x=a$.
- **(18)** If f(x) & g(x) both are non-derivable at x=a then the sum function $F(x)=f(x)+g(x)$ may be a differentiable function.

(iv) If $f(x)$ is derivable at $x = a$ \Rightarrow $f'(x)$ is continuous at $x = a$.

METHODS OF DIFFERENTIATION

1. DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE :

Obtaining the derivative using the definition

 $\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \frac{f(x + \delta x) - f(x)}{\delta x} = f'(x) = \frac{dy}{dx}$ is called calculating

derivative using first principle or ab initio or delta method,

2, FUNDAMENTAL THEOREMS:

If f and g are derivable function of x, then,

(a)
$$
\frac{d}{dx}(f \pm g) = \frac{df}{dx} \pm \frac{dg}{dx}
$$

(b)
$$
\frac{d}{dx}
$$
 (cf) = $c\frac{df}{dx}$, where c is any constant

(a)
$$
\frac{d}{dx}(f \pm g) = \frac{df}{dx} \pm \frac{dg}{dx}
$$

\n(b) $\frac{d}{dx}(cf) = c\frac{df}{dx}$, where c is any constant
\n(c) $\frac{d}{dx}(fg) = f\frac{dg}{dx} + g\frac{df}{dx}$ known as "PRODUCT RULE"

(d)
$$
\frac{d}{dx} \left(\frac{f}{g}\right) = \frac{g\left(\frac{df}{dx}\right) - f\left(\frac{dg}{dx}\right)}{g^2}
$$

where $q \neq 0$ known as "QUOTIENT RULE"

(e) If $y = f(u) \& u = g(x)$, then $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$ known as "**CHAIN RULE**"

Note : In general if y = f(u), then $\frac{dy}{dx} = f'(u) \cdot \frac{du}{dx}$.

'i ~ ~ I s\Formula Hardsca, Matis) ~ i ander) **ISLIEEAAarced** $\frac{1}{2}$ rade(12016-17)

To find the derivative of :

- (a) A function which is the product or quotient of a number of function or
- (b) A function of the form $[f(x)]^{g(x)}$ where f & g are both derivable, it is convenient to take the logarithm of the function first & then differentiate.

E

n Fermula
A . Machel en Handbook, N

ILuader anced). **LJEEDVOWS**

node06\2016-17'

10. DIFFERENTIATION OF DETERMINANTS :

If
$$
F(x) = \begin{vmatrix} f(x) & g(x) & h(x) \ l(x) & m(x) & n(x) \ u(x) & v(x) & w(x) \end{vmatrix}
$$
, where f, g, h. l, m, n, u, v, w are

differentiable functions of x, then

11. L' HOPITAL'S RULE:

(a) Applicable while calculating limits of indeterminate forms of

the type $\frac{0}{0}$, $\frac{\infty}{\infty}$. If the function f(x) and g(x) are differentiable in certain neighbourhood of the point a, except, may be, at the point a itself, and $g'(x) \neq 0$, and if the type $\frac{0}{0}$, $\frac{\infty}{\infty}$. If the function f(x) and g(x) are differential
certain neighbourhood of the point a, except, may be,
point a itself, and g(x) \neq 0, and if
 $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = 0$ or $\lim_{x\to\in$

 $\lim_{x \to b} f(x) = \lim_{x \to b} g(x) = 0$ or $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$,

then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

provided the limit $\lim_{x\to a} \frac{f(x)}{g'(x)}$ exists (L' Hôpital's rule). The point

'a' may be either finite or improper $+ \infty$ or $-\infty$,

(b) Indeterminate forms of the type 0, ∞ or ∞ - ∞ are reduced to

forms of the type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by algebraic transformations.

(c) Indeterminate forms of the type 1^∞ , ∞^0 or 0^0 are reduced to forms of the type 0. ∞ by taking logarithms or by the transformation $[f(x)]^{\phi(x)} = e^{\phi(x).tnf(x)}$.

!' **I Martist IV** Lander V 6-17\Kota node061201

(e) Derivative test for Increasing and decreasing functions at a point:

- (i) If $f'(a) > 0$ then $f(x)$ is increasing at $x = a$.
- (iii) If $f'(a) < 0$ then $f(x)$ is decreasing at $x = a$.
- **(iii)** If $f'(a) = 0$ then examine the sign of $f'(a^+)$ and $f'(a^-)$.
	- **(1)** If $f'(a^+) > 0$ and $f'(a^-) > 0$ then increasing
	- **(2)** If $f'(a^+) < 0$ and $f'(a^-) < 0$ then decreasing
	- **(3)** Otherwise neither increasing nor decreasing.

Note : Above rule is applicable only for functions that are differentiable at $x = a$.

2. **MONOTONICITY OVER AN INTERVAL** :

- **(a)** A function f(x) is said to be monotonically increasing (MI) in (a , b) if $f'(x) \ge 0$ where equality holds only for discrete values of x i.e. $f(x)$ does not identically become zero for $x \in (a, b)$ or any sub interval.
- **(b)** $f(x)$ is said to be monotonically decreasing (MD)in (a, b) if $f(x) \le 0$ where equality holds only for discrete values of x i.e. f(x) does not identically become zero for $x \in (a, b)$ or any sub interval. if $f(x) \ge 0$ where equality holds only tor discrete values of
 $f'(x)$ does not identically become zero for $x \in (a, b)$ or an

interval.
 (b) $f(x)$ is said to be monotonically decreasing (MD)in (a, b) if f

where equality
	- By discrete points, we mean that points where $f(x) = 0$ does not form an interval.

ghEnglah.p65 **Engli Book NFormula**

A Sheet I-fandbook_Maths\F

DIG ITVAGO LEEIA deskeri La

I Maths **N** Leader N

Note : A function is said to be monotonic if it's either increasing or decreasing.

3. **SPECIAL POINTS :**

- **(a) Critical points:** The points of domain for which f(x) is equal to zero or doesn't exist are called critical points.
- **(b) Stationary points:** The stationary points are the points of domain where $f(x) = 0$.

Every stationary point is a critical point.

4. **ROLLE'S THEOREM:**

Let f be a function that satisfies the following three hypotheses :

- (a) f is continuous in the closed interval [a, b].
- **(b) f** is differentiable in the open interval (a, b)
 (c) $f(a) = f(b)$
	- **(c)** $f(a) = f(b)$

consecutive roots of $f(x) = 0$, there is atleast one root of the equation $f(x) = 0$.

5. lAGRANGE'S MEAN VALUE THEOREM (LMVT) :

(a) Geometrical Interpretation:

Geometrically, the Mean Value Theorem says that somewhere between A and B the curve has at least one tangent parallel to chordAB. \mathbf{E}

(b) Physical Interpretations :

If we think of the number $(f(b) - f(a))/(b - a)$ as the average change in f over [a, bl and f(c) as an instantaneous change, then the Mean Value Theorem says that at some interior point the instantaneous change must equal the average change over the entire interval.

6. **SPECIAL NOTE** :

Use of Monotonicity in identifying the number of roots of the equation in a given interval. Suppose a and b are two real numbers such that,

- (a) $f(x)$ & its first derivative $f(x)$ are continuous for $a \le x \le b$.
- **(b)** f(a) and f(b) have opposite signs.
- **(e)** f(x) is different from zero for all values of x between a & b. Then there is one & only one root of the equation $f(x) = 0$ in (a, b). (c) $f(x)$ is different from zero for all values of x between a defined on the state of $f(x) = 0$ is the state of $f(x) = 0$ if $f(x) = 0$ is the state of $f(x) = 0$ is the state of $f(x) = 0$ is the state of $f(x) = 0$ is the state

A function $f(x)$ is said to have a maximum at $x = a$ if there exist a neighbourhood $(a - h, a + h) - \{a\}$ such that $f(a) > f(x) \forall x \in (a - h, a + h) - \{a\}$

(b) Minima (Local minima) :

A function $f(x)$ is said to have a minimum at $x = a$ if there exist a neighbourhood $(a - h, a + h) - \{a\}$ such that $f(a) < f(x)$ \forall $x \in (a - h, a + h) - \{a\}$

(c) Absolute maximum (Global maximum) :

A function f has an absolute maximum for global maximum) at c if $f(c) \ge f(x)$ for all x in D, where D is the domain of f. The number f(c) is called the maximum value of f on D.

(d) Absolute minimum (Global minimum) :

A function f has an absolute minimum at c if $f(c) \le f(x)$ for all x in D and the number f(c) is called the minimum value of f on D. The maximum and minimum values of f are called the **extreme** \mathbf{r} is the maximum and minimum values of f are called the **extreme**
 \mathbf{r} **values** of f.

Note that :

- (I) the maximum & minimum values of a function are also known as **local/relative maxima or local/relatIve minima** as these are the greatest & least values of the function relative to some neighbourhood of the point in question.
- **(II)** the term 'extremum' or 'turning value' Is used both for maximum **or a minimum value.**
- **(111)** a maximum (minimum) value of a function may not be the greatest (least) value in a finite interval.
- **(Iv)** a function can have several maximum & minimum values & a minimum value may be greater than a maximum value.
- **(v)** local maximum & local minimum values of a continuous function occur alternately & between two consecutive local maximum values there is a local minimum value & vice versa.
- **(vi)** Monotonic function do not have extreme points.

2. DERIVATIVE TEST FOR ASCERTAINING MAXIMA/ MINIMA:

(a) First derivative test :

Find the point (say $x = a$) where $f'(x) = 0$ and

- **(1)** If f'(x) changes sign from positive to negative while graph of the function passes through $x = a$ then $x = a$ is said to be a point of **local maxima.** (vi) Monotonic function do not have extreme points.
 DERIVATIVE TEST FOR ASCERTAINING MAXI
 MINIMA :

(a) First derivative test :

Find the point (say $x = a$) where $f(x) = 0$ and

(i) If $f(x)$ changes sign from positive
	- (ii) If f(x) changes sign from negative to positive while graph of the function passes through $x = a$ then $x = a$ is said to be a point of **local minima.**

Note: If f '(x) does not change sign i.e. has the same sign in a certain complete neighbourhood of a , then $f(x)$ is either strictly increasing or decreasing throughout this neighbourhood implying that f(a) is not an extreme value of f.

English prills
-3. **(b) Second derivative test:** If f(x) is continuous and differentiable at $x = a$ where $f'(a) = 0$ and f"(a) also exists then for ascertaining maxima/minima at $x = a$, $2nd$ derivative test can be used -(i) If $f''(a) > 0$ \Rightarrow x = a is a point of local minima (iii) If $f''(a) < 0 \implies x = a$ is a point of local maxima (iii) If $f'(a) = 0$ \Rightarrow second derivative test fails. To identify maxima/minima at this point either first derivative test or higher derivative test can be used. **(c) n'" derivative test:** Let f(x) be a function such that $f(a) = f''(a) = f''(a) = = f^{n-1}(a) = 0$ & $fⁿ(a) \neq 0$, then (i) If n is even & $f''(a) > 0 \Rightarrow$ Minima, $f''(a) < 0 \Rightarrow$ Maxima (ii) If n is odd, then neither maxima nor minima at $x = a$ **USEFUL FORMULAE OF MENSURATION TO REMEMBER:** (a) Volume of a cuboid = ℓ bh. **(b)** Surface area of a cuboid = $2 (l + bh + hl)$. **(c)** Volume of a prism \neq area of the base x height. **(d)** Lateral surface area of prism = perimeter of the base x height. **(e)** Total surface area of a prism = lateral surface area + 2 area of the base (Note that lateral surfaces of a prism are all rectangles). **(f)** Volume of a pyramid $=\frac{1}{2}$ area of the base x height. ezt Handbook_Maths\F a \ Maris\Sheet\ (g) Curved surface area of a pyramid $=\frac{1}{2}$ (perimeter of the base) x slant height.
(Note that slant surfaces of a pyramid are triangles). j 1 $\frac{2}{3}$ **(h)** Volume of a cone = $\frac{2}{3} \pi r^2 h$. (i) Curved surface area of a cylinder = $2 \pi rh$. $\stackrel{\text{\tiny a}}{\mathsf{F}}$ (i) Total surface area of a cylinder = $2 \pi \text{rh} + 2 \pi \text{r}^2$. **151** Let $f(x)$ be a tunction such that $f(a) = f'(a) = f'(a) = \dots = f^n$

& $f^n(a) \neq 0$, then

(i) If n is even & $f^n(a) > 0 \Rightarrow$ Minima, $f^n(a) < 0 \Rightarrow$ Mi

(ii) If n is odd, then neither maxima nor minima at x =
 USEFUL FORMULAE OF MENSURATION

- **(k)** Volume of a sphere $=\frac{4}{3}\pi r^3$.
- (I) Surface area of a sphere = $4 \pi r^2$.
- **(m)** Area of a circular sector = $\frac{1}{2}r^2\theta$, when θ is in radians.
- (n) Perimeter of circular sector = $2r + r\theta$.

4. SIGNIFICANCE OF THE SIGN OF 2ND ORDER DERIVATIVE AND POINT OF INFLECTION:

The sign of the 2nd order derivative determines the concavity of the curve.

If $f''(x) > 0 \forall x \in (a, b)$ then graph of $f(x)$ is concave upward in (a, b) .

Similarly if $f''(x) < 0 \forall x \in (a, b)$ then graph of $f(x)$ is concave downward in (a, b).

Point of Inflection:

A point where the graph of a function has a tangent line and where the concavity changes is called a point of inflection. For finding point of inflection of any function,

y\English.pl ~ **Book I**-Formula **\Fandbook_Maris\Formul**
}

Sheet_N **I Mattel** IN LeaderN

I) 6-17 \Koan \JEE(Adanced)\Li
|-
|

, •

nation)

compute the solutions of $\frac{1}{\sqrt{dx^2}} = 0$

or does not exist. Let the solution is $x = a$, if sign of $\frac{d^2y}{dx^2}$ changes about this point then it is called point of inflection.

Note: If at any point $\frac{d^2y}{dx^2}$ does not exist but sign of $\frac{d^2y}{dx^2}$ changes about this point then it is also called point of inflection.

~--------------~~------------ **¹⁵²**__ ~E

--.-.. -... ::: .."'" """"Sisti::::::::· **.........**

5. SOME STANDARD RESULTS:

(a) Rectangle of largest area inscribed in a circle is a square.

(b) The function y = sin^mx cosⁿx attains the max value at x = tan⁻¹ $\sqrt{\frac{m}{n}}$

(c) If $0 < a < b$ then $|x - a| + |x - b| \ge b - a$ and equality hold when $x \in [a, b]$. If $0 < a < b < c$ then $|x - a| + |x - b| + |x - c| \ge c - a$ and equality hold when $x = b$

If $0 < a < b < c$ then $|x-a|+|x-b|+|x-c|+|x-d| \ge d-a$ and equality hold when $x \in (b, c)$.

6. SHORTEST DISTANCE BETWEEN TWO CURVES :

Shortest distance between two non-intersecting curves always along the common normal. (Wherever defined) non-intersecting curves
always along the common
normal. (Wherever defined)

gh English p65
International Property Engly i Steepi i Handbook, Malda Formula Book
. **MatleN** Leader\); 171 Kota \JEE(Advanced) \Li
} • 10060612016-171Kom/JEEA6
1 EL-________________ ~~--------------~

Note:

- **(i)** The point $P(x_1, y_1)$ will satisfy the equation of the curve & the equation of tangent & normal line.
- **(H) If** the tangent at any point P on the curve is parallel to the axis of x then $dy/dx = 0$ at the point P.
- (iii) If the tangent at any point on the curve is parallel to the axis of y, then dy/dx is not defined or $dx/dy = 0$ at that point.
- **(iv) If** the tangent at any point on the curve is equally inclined to both the axes then $dv/dx = \pm 1$.
- **(v)** If a curve passing through the origin be given by a rational integral algebraic equation, then the equation of the tangent (or tangents) at the origin is obtained by equating to zero the tenns of the lowest degree in the equation. e.g. If the equation of a curve be $x^2 - y^2 + x^3 + 3x^2y - y^3 = 0$, the tangents at the origin are given by $x^2 - y^2 = 0$ i.e. $x + y = 0$ and $x - y = 0$.

4. ANGLE OF INTERSECflON BETWEEN TWO CURVES :

Angle of intersection between two curves is defined as the angle between the two tangents drawn to the two curves at their point of intersection. If the angle between two curves is 90° then they are called **ORTHOGONAL** curves. by $x^2 - y^2 = 0$ i.e. $x + y = 0$ and $x - y = 0$
ANGLE OF INTERSECTION BETWEEN TWO CUR
Angle of intersection between two curves is defined as the
between the two tangents drawn to the two curves at the
of intersection. If the a

5.

English.ptd5

~ 1 st Formula

LENGTH OF TANGENT, SUBTANGENT, NORMAL & SUBNORMAL :

etti tandhook, Mattatti
... Art Mathel Sheet I is **Nassar**); I/1 Kota WEEDAdvanced\Li
} • • i

155

- **(a)** Length of the tangent $(PT) = \frac{y_1 \sqrt{1 + [f'(x_1)]^2}}{f'(x_1)}$
- **(b)** Length of Subtangent (MT) = $\frac{y_1}{f'(x_1)}$
- **(c)** Length of Normal (PN) = $y_1\sqrt{1+\left[\begin{array}{c}f'(x_1)\end{array}\right]^2}$
- (d) Length of Subnormal $(MN) = y_1 f(x_1)$

6. DIFFERENTIALS :

The differential of a function is equal to its derivative multiplied by the differential of the independent variable. Thus if, $y = \tan x$ then $dv = \sec^2 x dx$. In general $dv = f'(x)dx$ or $df(x) = f'(x)dx$

Note:

- $d(c) = 0$ where 'c' is a constant
- **(ii)** $d(u + v) = du + dv$ **(iii)** $d(uv) = u dv + v du$
- **(iv)** $d(u v) = du dv$ **(v)** $d(\frac{u}{v}) = \frac{vdu udv}{v^2}$ bite:
 $d(c) = 0$ where 'c' is a constant
 $d(u + v) = du + dv$ (iii) $d(uv) = u dv + v du$
 $d(u - v) = du - dv$ (v) $d(\frac{u}{v}) = \frac{v du - u dv}{v^2}$

(v) $d(\frac{u}{v}) = \frac{v du - u dv}{v^2}$
- (vi) For the independent variable 'x', increment Δx and differential dx are equal but this is not the case with the dependent variable 'y' i.e. $\Delta v \neq dv$. \therefore Approximate value of y when increment Δx is given to independent

ghEngleh.pdf **Engineer** ! APormula

an'i Hamiltoni, Madia Vi
I

!!
Theoretical product !!

• • i

Stanen's **I Mashe ILLeader**

variable x in y = f(x) is y + $\Delta y = f(x + \Delta x) = f(x) + \frac{dy}{dx}.\Delta x$

(vii) The relation dy = f(x) dx can be written as $\frac{dy}{dx} = f'(x)$; thus the quotient of the differentials of 'y' and 'x' is equal to the derivative of 'y' w.r.t. 'x'.

If f & F are function of x such that $F'(x) = f(x)$ then the function F is called a **PRIMITIVE OR ANTIDERIVATIVE OR INTEGRAL** of $f(x)$ w.r.t. x and is written symbolically as

 $|f(x)dx = F(x) + c \Leftrightarrow -[F(x) + c] = f(x)$, where c is called the dx

constant of Integration.

1. **STANDARD RESULTS:**

$$
\textbf{(i)} \qquad \int (ax + b)^n dx = \frac{(ax + b)^{n+1}}{a(n+1)} + c \, ; \, n \neq -1
$$

(ii)
$$
\int \frac{dx}{ax+b} = \frac{1}{a}ln |ax+b| + c
$$

$$
(iii) \qquad \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c
$$

(ii)
$$
\int \frac{dx}{ax+b} = \frac{1}{a}ln|ax+b|+c
$$

\n(iii) $\int e^{ax+b}dx = \frac{1}{a}e^{ax+b}+c$
\n(iv) $\int a^{px+q}dx = \frac{1}{p} \frac{a^{px+q}}{\ln a}(a>0) + c$
\n(v) $\int sin(ax+b)dx = -\frac{1}{a}cos(ax+b) + c$

(v)
$$
\int \sin(ax + b)dx = -\frac{1}{a}\cos(ax + b) + c
$$

$$
(vi) \qquad \int \cos(ax + b)dx = \frac{1}{a}\sin(ax + b) + c
$$

(vii)
$$
\int \tan(ax + b)dx = \frac{1}{a} \ln \sec(ax + b) + c
$$

(viii)
$$
\int \cot(ax + b)dx = \frac{1}{a}\ln\sin(ax + b) + c
$$

$$
(ix) \qquad \int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + c
$$

$$
(x) \qquad \int \csc^2(ax + b)dx = -\frac{1}{a}\cot(ax + b) + c
$$

(xi) $\int \csc(ax + b) \cdot \cot(ax + b) dx = -\frac{1}{a} \csc(ax + b) + c$

(Formula Book Engl\English p65 **Martis** 1) landbook '1 , l 1 dwanced! Lea ~ ~ • • j

E

, 1996)

i vErspisch **A** Engin **B**ank AFormula

i Sheen Marabaan, Matta Vi
.

MaslaN !\Leader\!

,2016-17\Koo\.EE(Advancel\L
|

ļ

eet \Piandbook_Marita\F 2016-1714da 1,32534.a.areed\1.4
... **2. TECHNIQUES OF INTEGRATION** : (a) Substitution or change of independent variable : Integral I = $\int f(x) dx$ is changed to $\int f(\phi(t)) \phi'(t) dt$, by a suitable substitution $x = \phi(t)$ provided the later integral is easier to integrate. $Some standard substitution:$ **(1)** $\int [f(x)]^n f'(x) dx$ OR $\int \frac{f'(x)}{[f(x)]^n}$ OR $J_{[f(x)]^n}$ dx put $f(x) = t$ & proceed. **(2)** $\frac{dx}{2}$, $\frac{dx}{2}$, $\frac{dx}{2}$, $\sqrt{ax^{2}+bx+c}$ dx $ax^2 + bx + c$ $\sqrt{ax^2 + bx + c}$ Express $ax^2 + bx + c$ in the form of perfect square & then apply the standard results. **(3)** $\int \frac{px+q}{\sqrt{2 + \ln x}} dx$, $\int \frac{px+q}{\sqrt{2 + \ln x}} dx$ $ax^2 + bx + c$ $\sqrt{ax^2 + bx + c}$ -Express $px + q = A$ (differential coefficient of denominator) + B. **(4)** $[e^x[f(x) + f'(x)]dx = e^x.f(x) + c$ **(5)** $[If(x) + xf'(x)]dx = xf(x) + c$ **(6)** $\int \frac{dx}{\sqrt{1-x}}$ n \in N, take xⁿ common & put $1 + x^{-n} = t$. $x(x^n + 1)$ (7) $\int \frac{dx}{(n-1)/n} \in N$, take x^n common & put $1 + x^{-n} = t^n$ **(8)** $\int \frac{dx}{x^n(1+x^n)^{1/n}}$, take x^n common and put $1 + x^{-n} = t$. $x^2(x^n + 1)$ ^{/n} OR $\int \frac{dx}{a + b \cos^2 x}$ OR $\int_{a \sin^2 x + b \sin x \cos x + c \cos^2 x} dx$ Multiply N^r & D^r by $sec^2 x$ & put $tan x = t$. apply the standard results.

(3) $\int \frac{px+q}{ax^2+bx+c} dx$, $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$

Express $px+q = A$ (differential coefficient of denominator

(4) $\int e^x [f(x)+f'(x)]dx = e^x.f(x) + c$

(5) $\int [f(x)+xf'(x)]dx = x f(x) + c$

ghEnglah.p65 ! J il Formula

LLEN

er) Madish Sheer Vi **Jacker**

wde(6) 2016-17

ook Engli Englen.pób 1880A *SFormula* ael V-landbook "Mattel»
|-
| n Shaen V **I Mache** laster\ 016-17Koa vEEMaarootu.
I 1016-174

(16) To integrate $\int \sin^m x \cos^n x \, dx$.

(i) If m is odd positive integer put $\cos x = t$.

(ii) If n is odd positive integer put $\sin x = t$

(iii) If m $+$ n is negative even integer then put tan $x = t$.

(Iv) If m and n both even positive integer then use

$$
\sin^2 x = \frac{1 - \cos 2x}{2}, \cos^2 x = \frac{1 + \cos 2x}{2}
$$

(b) Integration by part: $\int u \cdot v \, dx = u \int v \, dx - \int \left[\frac{du}{dx} \cdot \int v \, dx \right] dx$

where u & v are differentiable functions. **Note:** While using integration by parts, choose u & v such that

(i) $\int v dx$ & (ii) $\int \left[\frac{du}{dx} \cdot \int v dx \right] dx$ is simple to integrate.

This is generally obtained, by keeping the order of u & v as per the order of the letters in **IlATE,** where; I-Inverse function, L-Logarithmic function, A-Algebraic function, T-Trigonometric function & E-Exponential function. This is generally obtained, by keeping the order of u & v as per
the order of the letters in **ILATE**, where: I-Inverse function,
L-Logarithmic function, A-Algebraic function, T-Trigonometric
function & E-Exponential funct

(e) Partial fraction: Rational function is defined as the ratio of $P(x)$ polynomials in x and $Q(x) \neq 0$. If the degree of P(x) is less than the degree of Q(x), then the rational function is called proper, otherwise, it is called improper. The improper rational function can be reduced to the proper rational functions by long division $P(x)$ P(x) $P_1(x)$ process. Thus, if $\overline{Q(x)}$ is improper, then $\overline{Q(x)} = T(x) + \overline{Q(x)}$, $P_1(x)$ where T(x) is a polynomial in x and $\frac{1}{\Omega(x)}$ is proper rational function. It is always possible to write the integrand as a sum of simpler rational functions by a method called partial fraction decomposition. After this, the integration can be carried out $\overline{\mathbf{E}}$ easily using the already known methods.

where $x^2 + bx + c$ cannot be factorised further

Note:

M٥

In competitive exams, partial fraction are generally found by inspection by noting following fact :

$$
\frac{1}{(x-\alpha)(x-\beta)}=\frac{1}{(\alpha-\beta)}\left(\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right).
$$

It can be applied to the case when x^2 or any other function is there in place of x. by noting following fact :
 $\frac{1}{(x-\alpha)(x-\beta)} = \frac{1}{(\alpha-\beta)\left(\frac{1}{x-\alpha}\cdot\frac{1}{x-\beta}\right)}$.

It can be applied to the case when x^2 or any other function is the place of x.
 Example :

Example:

(1)
$$
\frac{1}{(x^2+1)(x^2+3)} = \frac{1}{2} \left(\frac{1}{t+1} - \frac{1}{t+3} \right)
$$
 (take $x^2 = t$)

$$
(2) \ \ \frac{1}{x^4(x^2+1)} = \frac{1}{x^2} \left(\frac{1}{x^2} - \frac{1}{x^2+1} \right) = \frac{1}{x^4} - \left(\frac{1}{x^2} - \frac{1}{x^2+1} \right)
$$

$$
(3) \ \ \frac{1}{x^3(x^2+1)} = \frac{1}{x} \left(\frac{1}{x^2} - \frac{1}{x^2+1} \right) = \frac{1}{x^3} - \frac{1}{x(x^2+1)}
$$

J
Julian I Engil 1 Book s\Formula **INTERNATIONAL PARTICIP 1Sheet!** Kathe\ Lander). LIVNON, E **PVISE, 120X11,1-9102,190904**

- 1. (a) The Fundamental Theorem of Calculus, Part 1: If f is continuous on [a, b], then the function g defined by $g(x) = \int_0^x f(t) dt$ $a \le x \le b$ \ddot{a} is continuous on la , bl and differentiable on (a, b), and g'(x) = f(x). (b) The Fundamental Theorem of Calculus, Part 2 : b If f is continuous on [a, b], then $\int f(x)dx = F(b) - F(a)$ where F is any antiderivative of f, that is, a function such that $F' = f$. b **Note:** If $\int f(x)dx = 0 \implies$ then the equation $f(x) = 0$ has at least one $\frac{1}{4}$
root lying in (a,b) provided f is a continuous function in (a,b). any antiderivative of f, that is, a function such that F'= f.

Soldie: If $\int_{a}^{b} f(x)dx = 0 \Rightarrow$ then the equation $f(x) = 0$ has at least

root lying in (a,b) provided f is a continuous function in (

A definite integral is d
- $2.$ b A definite integral is denoted by $\int f(x)dx$ which represent the area bounded by the curve $y = f(x)$, the ordinates $x = a$, $x = b$ and the

 2π x-axis. ex. $\int \sin x dx = 0$

- 3. PROPERTḮES OF DEFINITE INTEGRAL :
	- b b (a) $\int f(x) dx = \int f(t) dt$ \overline{a} \overline{a} a numerical quantity. b \Rightarrow $\int f(x) dx$ does not depend upon x. It is o
	- b **(b)** $\int_0^1 f(x) dx = - \int_0^1 f(x) dx$ \mathbf{b} \mathbf{c} \mathbf{b} (c) $\int f(x)dx = \int f(x)dx + \int f(x)dx$, where c may lie inside or outside the interval [a, b]. This property to be used when f is piecewise continuous in (a, b).

theematics Handbook

\n(d)
$$
\int_{-6}^{9} f(x) dx = \int_{0}^{6} f(x) + f(-x) dx = \int_{0}^{6} f(x) dx
$$
 if $f(x)$ is an even function

\n(e)
$$
\int_{0}^{b} f(x) dx = \int_{0}^{b} f(a+b-x) dx
$$
, In particular
$$
\int_{0}^{b} f(x) dx = \int_{0}^{b} f(a-x) dx
$$

\n(f)
$$
\int_{0}^{b} f(x) dx = \int_{0}^{b} f(x) dx + \int_{0}^{b} f(2a-x) dx = \int_{0}^{b} \int_{0}^{b} f(x) dx
$$
 if $f(2a-x) dx = f(x)$

\n(g)
$$
\int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx
$$
, $m(n \in \mathbb{I})$; where 'T' is the period of the function i.e. $f(T + x) = f(x)$

\nNote that :
$$
\int_{x}^{T} f(t) dt
$$
 will be independent of x and equal to
$$
\int_{0}^{T} f(t) dt
$$

\n(h)
$$
\int_{a+nT}^{b+nT} f(t) dx = \int_{a}^{b} f(x) dx
$$
, $m, m \in \mathbb{N}$ if $f(x)$ is periodic with period T & n \in \mathbb{I}.

\n(i)
$$
\int_{0}^{b+nT} f(x) dx = (n-m) \int_{0}^{a} f(x) dx
$$
, $(n, m \in \mathbb{N})$ if $f(x)$ is periodic with period 1.

\n4. **WALLI'S FORMULA** :

\n(a)
$$
\int_{0}^{x/2} f(x) dx = \int_{0}^{x/2} f(x) dx = \int_{0}^{x/2} f(x) dx = \int_{0}^{x/2} f(x) dx
$$
 for $x \in \mathbb{N}$ and $f(x) = 0$.

\n(b)
$$
\int_{0}^{x/2} \sin^{n} x dx = \int_{0}^{x/2} \cos^{n} x dx
$$

\n
$$
= \frac{[(n-1)(n-3)(n-5)...1 \text{ or } 2][(m-1)(m-3
$$

g/Lington p65 *l* Ø **11Formula**

и r,

aeli-landbook_MarialiF

016-17\Kota\JEEKAdvanud\La

ISheeN **I Mazhe** Leader

Book (Engl\English.p65

~

j
Hatlak **japan**

LITI Kosi JEEUVAareedi L

|
| nade0612016-17
|

Where $K = \sqrt{2}$ if both m and n are even (m, n \in N) 1 otherwise

5. DERIVATIVE OF ANTIDERIVATIVE FUNCTION (Newton· Leibnitz Formula) :

If $h(x)$ & $g(x)$ are differentiable functions of x then,

 \mathbf{d} h(x) $\frac{1}{x}$ | f(t)dt = f[h(x)].h '(x) – f[g(x)].g '(x) α $g(x)$

6. DEFINITE INTEGRAL AS UMIT OF A SUM :

b $\int f(x)dx = Limh[f(a) + f(a + h) + f(a + 2h) + \dots + f(a + n - 1h)]$ a **n-1** \cdot ¹ $\lim_{h \to \infty} h \sum_{r=0}^{h} f(a + rh) = \int_{0}^{h} f(x) dx \text{ where } b - a = nh$ $\int_{a}^{f(x)dx} = \lim_{n \to \infty} h[f(a) + f(a+h) + f(a+2h) + + f(a+n-1h)$
 $\lim_{h \to \infty} h \sum_{r=0}^{n-1} f(a+rh) = \int_{0}^{1} f(x)dx$ where $b-a = nh$

If $a = 0$ & $b = 1$ then, $\lim_{n \to \infty} h \sum_{r=0}^{n-1} f(rh) = \int_{0}^{1} f(x)dx$; where nh

If $a = 0$ & $b = 1$ then, $\lim_{n \to \infty} h \sum_{r=0}^{n-1} f(rh) = \int_{0}^{1} f(x) dx$; where $nh = 1$

OR $\lim_{n\to\infty} \left(\frac{1}{n}\right) \sum_{n=1}^{n-1} f\left(\frac{r}{n}\right) = \int_{0}^{1} f(x) dx$.

n-+7.: n ^f "') n 0 i **7. ESTIMATION OF DEFINITE INTEGRAL** :

(a) If $f(x)$ is continuous in [a, b] and it's range in this interval is $[m,$

a a

$$
M_1, \text{ then } m(b-a) \leq \int_a^b f(x)dx \leq M(b-a)
$$
\n**(b)** If $f(x) \leq \phi(x)$ for $a \leq x \leq b$ then $\int_a^b f(x)dx \leq \int_a^b \phi(x)dx$

(c)
$$
\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} f(x) dx
$$
.

(d) If $f(x) \ge 0$ on the interval [a,b], then $\int_{0}^{b} f(x) dx \ge 0$. $\frac{a}{\sqrt{a}}$ **(e)** $f(x)$ and $g(x)$ are two continuous function on [a, b] then $\left|\int f(x)g(x)dx\right| \leq \sqrt{\int f^2(x)dx \int g^2(x)dx}$ 8. **SOME STANDARD RESULTS : (a)** $\int_0^{\pi/2} \log \sin x dx = -\frac{\pi}{2} \log 2 = \int_0^{\pi/2} \log \cos x dx$ 2^{2} **(b)** $\int_a^b x dx = \frac{b-a}{2}$ a, $b \in I$ • b) $\int x dx = \frac{b-a}{2}a, b \in I$

c) $\int \frac{b|x|}{x} dx = |b| - |a|$.

~----------------~~------________ ~E **¹⁶⁶**

1. DIFFERENTIAL EQUATION:

An equation that involves independent and dependent variables and the derivatives of the dependent variables is called a DIFFERENTIAL EQUATION.

2. SOLUTION (PRIMITIVE) OF DIFFERENTIAL EQUATION:

Finding the unknown function which satisfies given differential equation is called SOLVING OR INTEGRATING the differential equation. The solution of the differential equation is also called its PRIMITIVE, because the differential equation can be regarded as a relation derived from it. PRIMITIVE, because the differential equation can be regarded
relation derived from it.
ORDER OF DIFFERENTIAL EQUATION :
The order of a differential equation is the order of the higherential coefficient occurring in it.

3. ORDER OF DIFFERENTIAL EQUATION:

The order of a differential equation is the order of the highest differential coefficient occurring in it.

4. DEGREE OF DIFFERENTIAL EQUATION :

The degree of a differential equation which can be written as a polynomial in the derivatives is the degree of the derivative of the highest order occurring in it, after it has been expressed in a form free from radicals & fractions so far as derivatives are concerned, thus the differential equation:

$$
f(x, y) \left[\frac{d^m y}{dx^m} \right]^p + \phi(x, y) \left[\frac{d^{m-1}(y)}{dx^{m-1}} \right]^q + \dots \dots \dots = 0
$$
 is of order

m & degree p.

Note that in the differential equation $e^y - xy'' + y = 0$ order is three but degree doesn't exist.
 \mathbf{F}

5. **FORMATION'OF A DIFFERENTIAL EQUATION:**

If an equation in independent and dependent variables having some arbitrary constant is given, then a differential equation is obtained as follows :
(a) Differentiate the given equation w.r.t the independent variable

- (say x) as many times as the number of arbitrary constants in it.
- **(b)** Eliminate the arbitrary constants:

The eliminant is the required differential equation.

Note: A differential equation represents a family of curves all satisfying some common properties. This can be considered as the geometrical interpretation of the differential equation.

6. GENERAL AND PARTICUlAR SOLUTIONS:

The solution of a differential equation which contains a number of independent arbitrary constants equal to the order of the differential equation is called the GENERAL SOLUTION (OR COMPLETE INTEGRAL OR COMPLETE PRIMITIVE). A solution obtainable from the general solution by giving particular values to the constants is called a PARTICULAR SOLUTION. The solution of a differential equation which contains a numb
independent arbitrary constants equal to the order of the differency
equation is called the GENERAL SOLUTION (OR COMPL
INTEGRAL OR COMPLETE PRIMITIVE). A soluti

7. **ELEMENTARY TYPES OF FIRST ORDER & FIRST DEGREE DIFFERENTIAL EQUATIONS:**

(a) Variables separable:

TYPE-I : If the differential equation can be expressed as ; $f(x)dx + g(y)dy = 0$ then this is said to be variable - separable type.

A general solution of this is given by $\int f(x) dx + \int g(y) dy = c$;

where c is the arbitrary constant. Consider the example (dy/dx)
= $e^{x-y} + x^2 \cdot e^{-y}$
TYPE-2: Sometimes transformation to the polar co-ordinates $= e^{x-y} + x^2 \cdot e^{-y}$

facilitates separation of variables. In this connection it is [~] convenient to remember the following differentials. If $x = r \cos$ θ , $v =$ rsin θ then,

 (i) $xdx + vdy = rdr$

(ii) $dx^2 + dv^2 = dr^2 + r^2d\theta^2$

(iii) $xdv - vdx = r^2 d\theta$

If $x = r \sec \theta \& y = r \tan \theta$ then

x dx -v dy = r dr and x dy - v dx = r^2 sec θ d θ .

TYPE - 3 :
$$
\frac{dy}{dx} = f(ax + by + c), b \ne 0
$$

To solve this, substitute $t = ax + by + c$. Then the equation reduces to separable *type* in the variable t and x which can be solved.

Consider the example $(x + y)^2 \frac{dy}{dx} = a^2$

(b) Homogeneous equations :

A differential equation of the form $\frac{dy}{dx} = \frac{f(x,y)}{f(x,y)}$, where f(x, y) **(b) Homogeneous equations :**
A differential equation of the form $\frac{dy}{dx} = \frac{f(x, y)}{\phi(x, y)}$, where
& $\phi(x, y)$ are homogeneous functions of x & y and of the degree, is called HOMOGENEOUS. This equation may
 dy (x)

& ϕ (x, y) are homogeneous functions of x & y and of the same degree, is called HOMOGENEOUS. This equation may also be

reduced to the form $\frac{dy}{dx} = g(\frac{x}{y})$ & is solved by putting y = vx

so that the dependent variable y is changed to another variable v , where v is some unknown function, the differential equation is transformed to an equation with variables separable. Consider

the example
$$
\frac{dy}{dx} + \frac{y(x+y)}{x^2} = 0
$$

(e) Equations reducible to the homogeneous form :

If
$$
\frac{dy}{dx} = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}
$$
; where $a_1b_2 - a_2b_1 \neq 0$, i.e. $\frac{a_1}{b_1} \neq \frac{a_2}{b_2}$

then the substitution $x = u + h$, $y = v + k$

transform this equation to a homogeneous type in the new variables u and v where h and k are arbitrary constants to be chosen so as to make the given equation homogeneous.

- (i) If $a, b, -a, b, = 0$, then a substitution $u = a, x+b, y$ transforms the differential equation to an equation with variables separable.
- (ii) If $b_1 + a_2 = 0$, then a simple cross multiplication and substituting $d(xy)$ for $xdy + ydx$ & integrating term by term yields the result easily.

 $dy = x-2y+5$ dy $2x+3y-1$ Consider the examples $\frac{1}{dx} = \frac{1}{2x+y-1}$; $\frac{1}{dx} = \frac{1}{4x+6y-5}$

$$
8x \frac{dy}{dx} = \frac{2x - y + 1}{6x - 5y + 4}
$$

(iii) In an equation of the form : \mathbf{v} $\mathbf{f}(\mathbf{x})\mathbf{d}\mathbf{x} + \mathbf{x}\mathbf{d}\mathbf{x}\mathbf{v}\mathbf{d}\mathbf{d}\mathbf{v} = 0$ the variables can be separated by the substitution $xy = v$.

8. **UNEAR DIFFERENTIAL EQUATIONS:**

A differential equation is said to be linear if the dependent variable & its differential coefficients occur in the first degree only and are not multiplied together. (iii) In an equation of the form : $yf(xy)dx + xg(xy)dy = 0$
variables can be separated by the substitution $xy = v$.
INEAR DIFFERENTIAL EQUATIONS :
differential equation is said to be linear if the dependent variative tis differen

The nth order linear differential equation is of the form;

$$
a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_n(x)
$$
.

 $y = \phi(x)$, where $a_0(x)$, $a_1(x)$ $a_n(x)$ are called the coefficients of the differential equation.

(a) Unear differential equations of first order :

The most general form of a linear differential equations of first

order is
$$
\frac{dy}{dx}
$$
 + Py = Q, where P & Q are functions of x.

To solve such an equation multiply both sides by $e^{\int P dx}$. Then

the solution of this equation will be $ye^{\int Pdx} = \int Qe^{\int Pdx} dx + c$

(b) Equations reducible to linear form :

The equation $\frac{dy}{dx}$ + Py = Q.y" where P & Q are function, of x,

is reducible to the linear form by dividing it by y ⁿ & then substituting $y^{-n+1} = Z$. Consider the example $(x^3y^2 + xy)dx = dy$.

The equation $\frac{dy}{dx}$ + Py = Qyⁿ is called BERNOULI'S EQUATION.

9. **11IAJECTORIES** :

A curve which cuts every member of a given family of curves according to a given law is called a Trajectory of the given family.

Orthogonal trajectories :

A curve making at each of Its points a right angle with the curve of the family passing through that point is called an orthogonal trajectory of that family. A curve making at each of its points a right angle with the c
the family passing through that point is called an orthogonal tra
of that family.
We set up the differential equation of the given family of
Let it be of the f

We set up the differential equation of the given family of curves. Let it be of the form $F(x, y, y') = 0$

The differential equation of the orthogonal trajectories is of the form

$$
F\left(x, y, \frac{-1}{y'}\right) = 0
$$

The general integral of this equation $\phi_1(x, y, C) = 0$ gives the family of orthogonal trajectories.

Note:

Book (Engl\Englah.pdd)

s1Formula

Laoče': Marin'i Shaari i Handbook, Mishiri
.
.

016-171%can.JEEMdaanced.LL
|-
|

= moint0(12016-1711)
-

Following exact differentials must be remembered

(i)
$$
x dy + y dx = d(xy)
$$

\n(ii) $\frac{x dy - y dx}{x^2} = d\left(\frac{y}{x}\right)$

\n(iii) $\frac{y dx - x dy}{y^2} = d\left(\frac{x}{y}\right)$

\n(iv) $\frac{x dy + y dx}{xy} = d(\ln xy)$

\n(v) $\frac{dx + dy}{x + y} = d(\ln(x + y))$

\n(vi) $\frac{x dy - y dx}{xy} = d\left(\ln \frac{y}{x}\right)$

171

~l . . , $\frac{1}{\sqrt{2}}$ *Mathematics Handbook* **(vii)** $\frac{ydx - xdy}{xy} = d\left(\ln{\frac{x}{y}}\right)$ (viii) $\frac{xdy - ydx}{y^2 + y^2} = d \left(\tan^{-1} \frac{y}{y}\right)$ $x^2 + y^2 = x^2 + x^2$ (x) $\frac{xdx + ydy}{x^2 + y^2} = d \left[ln \sqrt{x^2 + y^2} \right]$ **(ix)** $\frac{ydx - xdy}{x^2 + y^2} = d\left(\tan^{-1} \frac{x}{y}\right)$ ye' dx-e' dy xdy + ydx x^2y^2 y^2 xeYdy-eYdx **, ... RECT YRANT.** x^2 maus similate aver A we confirm we may be a key as following profit of the system of the second second second second second second
Outfinances the second sec SBG STUDYi :
4:4847 ! Book **INFormula** Segue to be a maintained by annotal to masa or een Hundbook, Mainan F successful to the fire in for event on an in deal weather the in prob--
Shawn) **Haths** gallies thu as an **IVLeader** 23 I
I verden stad i stad i verden var stad i stad i verden var stad i stad i verden var stad i verden var stad i
I verden stad i verden var stad i verd $\{X\}$, X , X (田) $\label{eq:3.1} \hat{\mathbb{P}}\cdot\left(\mathbb{Q}_{\mathbb{P}^2}\times\mathbb{H}^2\right)\left(\hat{\mathbb{P}}\right)=\frac{\langle\hat{\mathbb{Q}}\times\hat{\mathbb{P}}\times\hat{\mathbb{Q}}\rangle}{\sqrt{2}}.$ *to* **'.** 89 ~----------------~~------~ ______ ^E**17'Z**

6. **CURVE TRACING** :

The following outline procedure is to be applied in Sketching the graph of a function $y = f(x)$ which in turn will be extremely useful to quickly and correctly evaluate the area under the curves.

- **(a)** Symmetry: The symmetry of the curve is judged as follows :
	- (I) If all the powers of y in the equation are even then the curve is symmetrical about the axis of x.
	- (ii) If all the powers of x ar even, the curve is symmetrical about the axis of y.
	- **(iii)** If powers of x & y both are even, the curve is symmetrical about the axis of x as well as y.
	- **(Iv)** If the equation of the curve remains unchanged on interchanging x and y, then the curve is symmetrical about $y = x$.
	- **(v)** If on interchanging the signs of x & y both the equation of the curve is unaltered then there is symmetry in opposite quadrants. $y = x$.

	(v) If on interchanging the signs of x & y both the equatio

	the curve is unaltered then there is symmetry in oppo

	quadrants.

	(b) Find dy/dx & equate it to zero to find the points on the c

	where you have horizo
- **(b)** Find dy/dx & equate it to zero to find the points on the curve where you have horizontal tangents.
- **(c)** Find the points where the curve crosses the x-axis & also the y-axis.
- **(d)** Examine if possible the intervals when I(x) is increasing or decreasing. Examine what happens to 'y' when $x \rightarrow \infty$ or $-\infty$.

7. **USEFUL RESULTS** :

- (a) Whole area of the ellipse, $x^2/a^2 + y^2/b^2 = 1$ is π ab.
- **(b)** Area enclosed between the parabolas $y^2 = 4$ ax & $x^2 = 4$ by is 16ab/3.
- **(c)** Area included between the parabola $y^2 = 4$ ax & the line $y = mx$ is $8a^2/3m^3$.

Handbook

VECTORS

1. Physical quantities are broadly divided in two categories viz (a) Vector Quantities & (b) Scalar quantities.

(a) Vector quantities :

Any quantity, such as velocity, momentum, or force, that has both magnitude and direction and for which vector addition is defined and meaningful; is treated as vector quantities.

(b) Scalar quantities :

A quantity, such as mass, length, time, density or energy, that has size or magnitude but does not involve the concept of direction is called scalar quantity.

2. REPRESENTATION :

direction is called scalar quantity.
 REPRESENTATION :

Vectors are represented by directed straight line segment Vectors are represented by directed straight line
segment
magnitude of $\vec{a} = |\vec{a}| = \text{length PQ}$ direction is called scalar quantity.
 REPRESENTATION :

Vectors are represented by directed straight line

segment

magnitude of $\vec{a} = |\vec{a}| = \text{length PQ}$

direction of $\vec{a} = P$ to Q.
 ADDITION OF VECTORS :

magnitude of
$$
\vec{a} = |\vec{a}|
$$
 = length PQ

direction of $\vec{a} = P$ to Q .

NEnglish.p55

Book E

et i Handbook, Mathu Vionnua.
19

11.Sheet1 i Mattel

waterWeather

mode0612016-1711

3. ADDITION OF VECTORS:

- **(a) It** is possible to develop an Algebra of Vectors which proves useful in the study of Geometry, Mechanics and other branches of Applied Mathematics.
	- (i) If two vectors \vec{a} & \vec{b} are represented by \overrightarrow{OA} & \overrightarrow{OB} , then their sum $\vec{a} + \vec{b}$ is a vector represented by OC , where OC is the diagonal of the parallelogram OACB.

p

- (ii) $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (commutative)
- **(iii)** $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (associativity) $\sum_{i=1}^{n}$ $\binom{n}{i}$, $\binom{n}{i}$,

•

VEHICA .
" West New J **,i**

 \blacksquare

tancinos.Nati 30065006 j • 1

~ 1 1 j

- **(I) Free vectors:** If a vector can be translated anywhere in space without changing its magnitude & direction. then such a vector is called free vector. In other words, the initial point of free vector can be taken anywhere in space keeping its magnitude & direction same.
- **(g) Localized vectors** : For a vector of given magnitude and direction. if its initial point is fixed in space. then such a vector is called localised vector. Unless & until stated, vectors are treated as free vectors.

5. **POSITION VECTOR:**

Let O be a fixed origin, then the position

\'cctor 01 a roint P is the vector OP. If

 $\&$ **b** are position vectors of two point A and B. then.

6. SECTION FORMULA:

If \overrightarrow{a} & \overrightarrow{b} a \in the position vectors of 'we points A & B then the p.v. α *c* α *b* α *c c c divides AB in the ratio* $m : n$ *<i>is given by* α

 $\dot{r} = \frac{n\ddot{a} + mb}{a}$ $m + r$

7. **veCTOR EQUATION OF A LINE**

Parametric vector equation of a line passing through two point $A(\vec{a})$ $\&$ $B(b)$ is given by, $\vec{r} = \vec{a} + t(\vec{b} \cdot \vec{a})$ where **t** is a parameter. If the line pass through the poin: A(a) & is parallel to the vector **b** then ~ __ ~

Book (Engl
(English p55

iVFormula

Machan Lander).

node06\2016-17\Kote\JEE(Advanced)

Authi Sheet Vilandhook_Matts \Fo
.

.' **178**

(iii) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ & $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$ $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$, $|\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2}$ (iv) - $|a||b| \le a.b \le |a||b|$ **(v)** Any vector \vec{a} can be written as, $\vec{a} = (\vec{a} \cdot \hat{i})\hat{i} + (\vec{a} \cdot \hat{i})\hat{j} + (\vec{a} \cdot \hat{k})\hat{k}$ **(vi)** A vector in the direction of the bisector of the angle between \vec{a} \vec{b} the two vectors \vec{a} & \vec{b} is $\frac{1}{|\vec{a}|} + \frac{1}{|\vec{b}|}$. Hence bisector of the angle between the two vectors \vec{a} & \vec{b} is $\lambda(\hat{a} + \hat{b})$, where $\lambda \in \mathbb{R}^*$. Bisector of the exterior angle between \vec{a} & \vec{b} is $\lambda(\hat{a} - \hat{b})$, $\lambda \in R^+$

(vii) $|\vec{a} \pm \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \pm 2\vec{a}.\vec{b}$

(viii) $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$

VECTOR PRODUCT OF TWO VECTORS (CRORPRODUCT):

(a) $\lambda(\hat{a} - \hat{b})$, $\lambda \in R^+$ **(vii)** $|\vec{a} \pm \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \pm 2\vec{a} \cdot \vec{b}$ **(viii)** $|\vec{a}+\vec{b}+\vec{c}|^2=|\vec{a}|^2+|\vec{b}|^2+|\vec{c}|^2+2(\vec{a},\vec{b}+\vec{b},\vec{c}+\vec{c},\vec{a})$ **10. VECTOR PRODUCT OF TWO VECTORS (CROSS PRODUCT): (a) If** a & b are two vectors &

 θ is the angle between them,

then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$,

where \hat{n} is the unit vector perpendicular to both a &

 \overrightarrow{b} such that \overrightarrow{a} , \overrightarrow{b} & \overrightarrow{n} forms a right handed screw system .

(b) Lagranges Identity : For any two vectors \vec{a} & \vec{b} ;

$$
(\vec{a} \times \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}
$$
(c) Formulation of vector product in terms of scalar product: vector product $\vec{a} \times \vec{b}$ is the vector \vec{c} , such that **(i)** $|\vec{c}| = \sqrt{\vec{a}^2 \vec{b}^2 - (\vec{a} \cdot \vec{b})^2}$ (ii) $\vec{c} \cdot \vec{a} = 0$; $\vec{c} \cdot \vec{b} = 0$ and (iii) \vec{a} , \vec{b} , \vec{c} form a right handed system (d) $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a}$ & \vec{b} are parallel (collinear) ($\vec{a} \neq 0$, $\vec{b} \neq 0$) i.e. $\vec{a} = K\vec{b}$, where K is a scalar (i) $\vec{a} \times \vec{b} \neq \vec{b} \times \vec{a}$ (not commutative) (iii) $(m\vec{a}) \times \vec{b} = \vec{a} \times (m\vec{b}) = m(\vec{a} \times \vec{b})$ where m is a scalar. (iii) $\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$ (distributive) (vi) $\hat{i} \times \hat{i} = \hat{i} \times \hat{i} = \hat{k} \times \hat{k} = 0$ (vi) $i \times i = j \times j = k \times k = 0$
 $\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$

(e) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ & $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then
 $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $\hat{i} \times \hat{j} = \hat{k}$, $\hat{i} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{i}$ (e) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ & $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then \hat{i} \hat{j} \hat{k} $\vec{a} \times \vec{b} = \begin{vmatrix} a_1 & a_2 & a_3 \end{vmatrix}$ b_1 b_2 b_3 (f) Geometrically $|\vec{a} \times \vec{b}| = \text{area of } \vec{a} \times \vec{b}$ the parallelogram whose two adjacent sides are represented by \vec{a} & \vec{b} . (g) (i) Unit vector perpendicular to the plane of \vec{a} & \vec{b} is $\hat{n} = \pm \frac{a \times b}{a}$ $l\bar{a} \times \bar{b}$ l (ii) A vector of magnitude 'r' & perpendicular to the plane of \vec{a} & \vec{b} is $\pm \frac{r(\vec{a} \times \vec{b})}{15 \times \vec{b}}$ (iii) If θ is the angle between \vec{a} & \vec{b} then $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$

180

- (h) Vector area:
	- (i) If \vec{a} , \vec{b} & \vec{c} are the pv's of 3 points A, B & C then

the vector area of triangle $ABC = \frac{1}{2} \left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right]$.

The points A, B & C are collinear if $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$

(ii) Area of any quadrilateral whose diagonal vectors are $\overline{d}_1 \& \overline{d}_2$

is given by $\frac{1}{2}|\vec{d}_1\times\vec{d}_2|$. Area of $\Delta = \frac{1}{2}|\vec{a}\times\vec{b}|$

11. SHORTEST DISTANCE BETWEEN TWO UNES

Lines which do not intersect & are also not parallel are called skew lines. In other words the lines which are not coplanar are skew lines. For Skew lines the direction of the

shortest distance vector would be perpendicular to both the lines. The magnitude of the shortest distance vector would be equal to that of the projection of \vec{AB} along the direction of the line of shortest distance, \vec{LM} is parallel to $\vec{p} \times \vec{q}$

 \overrightarrow{h} = I Projection of \overrightarrow{AB} on \overrightarrow{LM} I

$$
= |Projection of AB on \vec{p} \times \vec{q}|
$$

$$
= \left| \frac{\vec{AB}.(\vec{p} \times \vec{q})}{\vec{p} \times \vec{q}} \right| = \left| \frac{(\vec{b} - \vec{a}).(\vec{p} \times \vec{q})}{\vec{p} \times \vec{q}} \right|
$$

(a) The two lines directed along \vec{p} & \vec{q} will intersect only if shortest distance = 0

i.e. $(\vec{b} - \vec{a}) \cdot (\vec{b} \times \vec{a}) = 0$ i.e. $(\vec{b} - \vec{a})$ lies in the plane containing \vec{p} & \vec{q} \Rightarrow $[(\vec{b}-\vec{a}) \ \vec{p} \ \vec{q}] = 0$ \mathbf{A} If the linear properties by \vec{a} , \vec{a} , \vec{v} , \vec{b} , \vec{a} ,

b) If two lines are given by
$$
\vec{r}_1 = \vec{a}_1 + K_1 \vec{b}
$$

& $\vec{r}_2 = \vec{a}_2 + K_2 \vec{b}$ i.e. they
are parallel then, $d = \left| \frac{\vec{b} \times (\vec{a}_2 - \vec{a}_1)}{|\vec{b}|} \right|$

12. SCALAR TRIPLE PRODUCT / BOX PRODUCT / MIXED PRODUCT:

(a) The scalar triple product of three vectors \vec{a} , \vec{b} & \vec{c} is defined as: $(\vec{a} \times \vec{b})$. $\vec{c} = |\vec{a}| |\vec{b}| |\vec{c}| \sin \theta \cos \phi$

where θ is the angle between \vec{a} & \vec{b} & ϕ is the angle between $\vec{a} \times \vec{b}$ & \vec{c} . It is also

defined as $[\vec{a} \ \vec{b} \ \vec{c}]$, spelled as box product.

- **(b)** In a scalar triple product the position of dot & cross can be interchanged i.e. $\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$ OR $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{c} \ \vec{a} \ \vec{b}]$
- **(c)** $\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{a} \cdot (\vec{c} \times \vec{b})$ i.e. $[\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{a} \ \vec{c} \ \vec{b}]$
- **(d)** If \vec{a} , \vec{b} , \vec{c} are coplanar \Leftrightarrow $[\vec{a} \ \vec{b} \ \vec{c}] = 0 \Rightarrow \vec{a}$, \vec{b} , \vec{c} are linearly dependent.
- **(e)** Scalar product of three *vectors,* two of which are equal or parallel is 0 i.e. $[\vec{a} \ \vec{b} \ \vec{c}] = 0$

(f) $[ijk] = 1; [K\bar{a} \ \bar{b} \ \bar{c}] = K[\bar{a} \ \bar{b} \ \bar{c}];$ $[(\bar{a}+\bar{b}) \ \bar{c} \ \bar{d}] = [\bar{a} \ \bar{c} \ \bar{d}] + [\bar{b} \ \bar{c} \ \bar{d}]$

(g) (I) The Volume of the tetrahedron OABC with 0 as origin & the *pv*'s of A, B and C being \vec{a} , \vec{b} & \vec{c} are given by

$$
V = \frac{1}{6} \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}
$$

a,b& c is [a b Cl. **(h) Remember that** : **(i)** $[\vec{a}-\vec{b} \ \vec{b}-\vec{c} \ \vec{c}-\vec{a}]=0$ **(ii)** $[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}] = 2[\vec{a} \ \vec{b} \ \vec{c}]$ \vec{a} . \vec{a} \vec{a} . \vec{b} \vec{a} . \vec{c} **(iii)** $[\vec{a} \ \vec{b} \ \vec{c}]^2 = [\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = [\vec{b} \cdot \vec{a} \ \vec{b} \cdot \vec{b} \ \vec{b} \cdot \vec{c}]$ \vec{c} . \vec{a} \vec{c} . \vec{b} \vec{c} . \vec{c} **13. VECTOR TRIPLE PRODUCT :** (ii) Volume of parallelopiped whose co-terminus edges are Let \vec{a} , \vec{b} & \vec{c} be any three vectors, then that expression $\vec{a} \times (b \times \vec{c})$ is a vector & is called a vector triple product.

(a) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

(b) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$

(c) $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$

LLEN

14. LINEAR COMBINATIONS / LINEAR INDEPENDENCE AND DEPENDENCE OF VECTORS;: (a) $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c}$

(b) $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{c})\vec{a}$

(c) $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$

LINEAR COMBINATIONS / LINEAR INDEPENDENCE A

DEPEN

Linear combination of vectors:

Given a finite set of vectors \vec{a} , \vec{b} , \vec{c} ,........... then the vector

 $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c} + \dots$ is called a linear combination of

 \vec{a} , \vec{b} , \vec{c} , for any x, y, z \in R. We have the following results:

- (a) If $\vec{x}_1, \vec{x}_2,...\vec{x}_n$ are n non zero vectors, & $k_1, k_2,...k_n$ are n scalars & if the linear combination $k_1\vec{x}_1 + k_2\vec{x}_2 +k_n\vec{x}_n = 0$ \Rightarrow k₁ = 0, k₂ = 0.....k_n = 0 then we say that vectors \vec{x}_1 , \vec{x}_2 ,.... \vec{x}_n are **linearly independent vectors**
- **(b)** If \vec{x}_1 , \vec{x}_2 , \vec{x}_n are **not linearly independent** then they are said to be linear dependent vectors. i.e. if $k_1\bar{x}_1$, $k_2\bar{x}_2 +k_n\bar{x}_n = 0$ & if there exists at least one $k_1 \neq 0$ then \vec{x}_1 , \vec{x}_2 , $\ldots \vec{x}_n$ are said to be **linearly dependent.**
- (c). **Fundamental theorem in plane** : let \vec{a} , \vec{b} be non zero, non collinear vectors, then any vector \vec{r} coplanar with \vec{a} , \vec{b} can be expressed uniquely as a linear combination of \ddot{a} , \ddot{b} i.e. there exist some unique x, $y \in R$ such that $x\ddot{a} + y\ddot{b} = \ddot{r}$
- **(d) Fundamental theorem in space** : let \vec{a} , \vec{b} , \vec{c} be nonzero, non-coplanar vectors in space. Then any vector \vec{r} , can be uniquely expressed as a linear combination of \vec{a} , \vec{b} , \vec{c} i.e. There exist some unique x, y, $z \in R$ such that $\vec{r} = x\vec{a} + y\vec{b} + z\vec{c}$.

15. **COPlANARITY OF FOUR POINTS:**

Four points A, B, C, D with position vectors \vec{a} , \vec{b} , \vec{c} , d respectively are coplanar if and only if there exist scalars x , y , z , w not all zero simultaneously such that $x\vec{a} + v\vec{b} + z\vec{c} + w\vec{d} = 0$ where, $x + y + z + w = 0$ are coplanar if and only if there exist scalars x, y, z, w not al
simultaneously such that $x\vec{a} + y\vec{b} + z\vec{c} + w\vec{d} = 0$
where, $x + y + z + w = 0$
RECIPROCAL SYSTEM OF VECTORS :
If \vec{a} , \vec{b} , \vec{c} & \vec{a} , $\vec{$

16. RECIPROCAL SYSTEM OF VECTORS :

If \bar{a} , \bar{b} , \bar{c} & \bar{a} , \bar{b} , \bar{c} are two sets of non coplanar vectors such that $\vec{a} \cdot \vec{a}' = \vec{b} \cdot \vec{b}' = \vec{c} \cdot \vec{c} = 1$ then the two systems are called Reciprocal System of vectors.

Note: $\vec{a}' = \frac{\vec{b} \times \vec{c}}{\vec{b} \cdot \vec{c}}$; $\vec{b}' = \frac{\vec{c} \times \vec{a}}{\vec{c}}$; $\vec{c}' = \frac{\vec{a} \times \vec{b}}{\vec{c}}$ Note: $a = \frac{a}{[\overline{a} \ \overline{b} \ \overline{c}]}$; $b' = \frac{a}{[\overline{a} \ \overline{b} \ \overline{c}]}$; $\overline{c}' = \frac{a}{[\overline{a} \ \overline{b} \ \overline{c}]}$
 TETRAHEDRON:

17.

 $\cos^{-1} \frac{1}{3}$

- **(i)** Lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent and this point of concurrecy is called [~] the centre of the tetrahedron.
- (ii) In a tetrahedron, straight lines joining the mid points of each pair of opposite edges are also concurrent at the centre of the tetrahedron.
 (iii) The angle between any two plane faces of regular tetrahedron is of opposite edges are also concurrent at the centre of the
- **(iii)** The angle between any two plane faces of regular tetrahedron is

3D-COORDINATE GEOMETRY

1. DISTANCE FORMULA :

The distance between two points A (x_1, y_1, z_1) and B (x_2, y_2, z_2) is

given by AB =
$$
\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}
$$

2, **SECTION FORMULAE :**

Let $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ be two points and let R (x, y, z) divide PQ in the ratio $m_1 : m_2$. Then R is

$$
(\mathbf{x}, \, \mathbf{y}, \, \mathbf{z})=\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \, \, \frac{m_1y_2+m_2y_1}{m_1+m_2}, \, \, \frac{m_1z_2+m_2z_1}{m_1+m_2}\right)
$$

If (m_1/m_2) is positive, R divides PQ internally and if (m_1/m_2) is negative, then externally. If (m_1/m_2) is positive, R divides PQ internally and if (m_1/m_2) is
negative, then externally.
Mid point of PQ is given by $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$
CENTROID OF A TRIANGLE :
Let $A(x_1, y_1, z_1)$, $B(x$

Mid point of PQ is given by
$$
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)
$$

3. **CENTROID OF A TRIANGLE** :

ABC. Then its centroid G is given by

$$
G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)
$$

4, **DIRECTION COSINES OF LINE:**

If α , β , γ be the angles made by a line with x-axis, y-axis & z-axis respectively then $\cos\alpha$, $\cos\beta$ & $\cos\gamma$ are called direction cosines of a line, denoted by I, m & n respectively and the relation between *t,* m, n is given by $\ell^2 + m^2 + n^2 = 1$ 3. CENTROID OF A TRIANGLE :

Let $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, $C(x_3, y_3, z_3)$ be the verti

ABC. Then its centroid G is given by
 $G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$

4. DIRECTION COSINES OF LI

185

5. DIRECTION RATIOS:

Any three numbers a, b, c proportional to direction cosines ℓ , m, n are called direction ratios of the line.

i.e.
$$
\frac{\ell}{a} = \frac{m}{b} = \frac{n}{c}
$$

It Is easy to see that there can be infinitely many sets of direction ratios for a given line.

6. RELATION BETWEEN D.C'S & D.R'S :

$$
\frac{\ell}{a} = \frac{m}{b} = \frac{n}{c}
$$
\n
$$
\therefore \quad \frac{\ell^2}{a^2} = \frac{m^2}{b^2} = \frac{n^2}{c^2} = \frac{\ell^2 + m^2 + n^2}{a^2 + b^2 + c^2}
$$
\n
$$
\therefore \quad \ell = \frac{\pm a}{\sqrt{a^2 + b^2 + c^2}}; \quad m = \frac{\pm b}{\sqrt{a^2 + b^2 + c^2}}; \quad n = \frac{\pm c}{\sqrt{a^2 + b^2 + c^2}}
$$
\nDIRECTION COSINE OF AXES :

\nDirection ratios and Direction cosines of the line joining

$$
\ell = \frac{\pm a}{\sqrt{a^2 + b^2 + c^2}}
$$
; m = $\frac{\pm b}{\sqrt{a^2 + b^2 + c^2}}$; n = $\frac{\pm c}{\sqrt{a^2 + b^2 + c^2}}$

7. DIRECTION COSINE OF AXES :

two points:

Let $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ be two points, then d.r.'s of AB are

$$
x_2 - x_1
$$
, $y_2 - y_1$, $z_2 - z_1$ and the d.c.'s of AB are $\frac{1}{r}(x_2 - x_1)$, $\frac{1}{r}(y_2 - y_1)$,
 $\frac{1}{r}(z_2 - z_1)$ where $r = \sqrt{[\Sigma(x_2 - x_1)^2]} = |\overrightarrow{AB}|$

8. PROJECTION OF A LINE ON ANOTHER LINE :

Let PQ be a line segment with $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ and let L be a straight line whose d.c.'s are l, m, n. Then the length of projection

of PQ on the line L is $1 \ell (x_2 - x_1) + m (y_2 - y_1) + n (z_2 - z_1)$

9. ANGLE BETWEEN TWO UNES :

Let θ be the angle between the lines with d.c.'s l_1 , m_1 , n_1 and l_2 , m_2 ,

 n_2 then cos $\theta = l_1 l_2 + m_1 m_2 + n_1 n_2$. If a_1, b_1, c_1 and a_2, b_2, c_2 be

D.R.'s of two lines then angle θ between them is given by

$$
\cos\theta = \frac{(a_1a_2 + b_1b_2 + c_1c_2)}{\sqrt{(a_1^2 + b_1^2 + c_1^2)}\sqrt{(a_2^2 + b_2^2 + c_2^2)}}
$$

10. PERPENDICULARITY AND PARALLELISM :

Let the two lines have their d.c.'s given by l_1 , m_1 , n_1 and l_2 , m_2 , n_3 respectively then they are perpendicular if $\theta = 90^\circ$ i.e. cos $\theta = 0$, i.e.

Also the two lines are parallel if $\theta = 0$ i.e. $\sin \theta = 0$, i.e. $\frac{\ell_1}{\ell_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$

Note:

Book EngilEnghih p65

1.Formula

et Handbook_M
... 15Mar Machel

+ 171 Kots).JIEE (Adameed) \ 1.
}

• • t

If instead of d.c.'s, d.r.'s a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are given, then the lines are perpendicular if $a_1a_2 + b_1b_2 + c_1c_2 = 0$ and parallel if $a_1/a_2 = b_1/b_2 = c_1/c_2$. l_1 $l_2 + m_1m_2 + n_1n_2 = 0$.

Also the two lines are parallel if $\theta = 0$ i.e. $\sin \theta = 0$, i.e. $\frac{\ell_1}{\ell_2} = \frac{m_1}{m_2}$.

Note:

If instead of d.c.'s, d.r.'s a_1 , b_1 , c_1 and a_2 , b_2 , c_2 are given

the li

11. EQUATION OF A STRAIGHT UNE IN SYMMETRICAL FORM:

(a) One point form: Let $A(x_1, y_1, z_1)$ be a given point on the straight line and I, m, n the d.c's of the line, then its equation is

$$
\frac{x - x_1}{\ell} = \frac{y - y_1}{m} = \frac{z - z_1}{n} = r \quad (say)
$$

It should be noted that $P(x_1 + lr, y_1 + mr, z_1 + nr)$ is a general point on this line at a distance r from the point $A(x_1, y_1, z_1)$ i.e. $AP = r$. One should note that for $AP = r$; l, m, n must be d.c.'s not d.r.'s.

If a, b, c are direction ratios of the line, then equation of the line
is
$$
\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} = r
$$
 but here AP $\neq r$

1. 11.124.000h Hose Engli ote Hype **1999 Extracts**

~ Internal fither) **Standists** INLoader UP **INdentred**N

 $6 - 1718$ cita N_alif Ei**Oct**

~

(b) Equation of the line through two points
$$
A(x_1, y_1)
$$

is
$$
\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}
$$

12. **FOOT, LENGTH AND EQUATION OF PERPENDICUlAR FROM A POINT TO A LINE:**

Let equation of the line be
\n
$$
\frac{x - x_1}{\ell} = \frac{y - y_1}{m} = \frac{z - z_1}{n} = r
$$
 (say) (i)

and $A(\alpha, \beta, \gamma)$ be the point. Any point on the line (i) is

P(lr + Xl' mr + Y" nr + 2 ,) (ii) If it is the foot of the perpendicular, from A on the line, then AP is \perp to the line, so ℓ ($\ell r + x_1 - \alpha$) + m (mr + y₁ - β) + n (mr + z₁ - γ) = 0 i.e. $r = (\alpha - x_1) \ell + (\beta - y_1) m + (y - z_1) n$

 \sin **ce** $\ell^2 + m^2 + n^2 = 1$

Putting this value of r in (ii), we get the foot of perpendicular from point A 10 the line

Length : Since foot of perpendicular P is known, length of **perpendicular.** Summer $t^2 + m^2 + n^2 = 1$

Putting this value of r in (ii), we get the foot of perpendicular from A to the line.
 ength : Since foot of perpendicular P is known, length

derpendicular,

AP = $\sqrt{[(r + x_1 - \alpha)^2 + (mr + y_1 - \beta)^2 + (nr$

$$
AP = \sqrt{[(r + x_1 - \alpha)^2 + (mr + y_1 - \beta)^2 + (nr + z_1 - \gamma)^2]}
$$

Equation of perpendicular is given by

 $rac{x-\alpha}{(r+x_1-\alpha)} = \frac{y-\beta}{mr+y_1-\beta} = \frac{z-\gamma}{nr+z_1-\gamma}$

13. EQUATIONS OF A PLANE:

The equation of every plane is of the first degree i.e. of the form $ax + by + cz + d = 0$, in which a, b, c are constants, where $a^2 + b^2 + c^2 \neq$ 0 (i.e. a. b. $c \neq 0$ simultaneously).

(a) Vector form of equation of plane :

If \ddot{a} be the position vector of a point on the plane and \ddot{n} be a vector normal to the plane then it's vectorial equation is given

by $(\vec{r} - \vec{a}), \vec{n} = 0 \implies \vec{r}, \vec{n} = d$ where $d = \vec{a} \cdot \vec{n} = \text{constant}$

 F

energy in the second contract in the second contract of the second contract of the second second

(b) Plane Parallel to the Coordinate Planes:

(i) Equation of y-z plane is $x = 0$.

(iii) Equation of z-x plane is $y = 0$.

(iii) Equation of x -y plane is $z = 0$.

(iv) Equation of the plane parallel to x-y plane at a distance c is $z = c$. Similarly, planes parallel to y-z plane and z-x plane are respectively $x = c$ and $y = c$.

(c) Equations of Planes Parallel to the Axes :

If $a = 0$, the plane is parallel to x-axis i.e. equation of the plane parallel to x-axis is by $+ cz + d = 0$.

Similarly, equations of planes parallel to y-axis and parallel 10 z-axis are $ax + cz + d = 0$ and $ax + by + d = 0$ respectively.

(d) Equation of a Plane in Intercept Form :

Equation of the plane which cuts off intercepts a. b, c from the

axes is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$

(e) Equation of a Plane in Normal Form :

If the length of the perpendicular distance of the plane from the origin is p and direction cosines of this perrendicular are (I. m, n), then the equation of the plane is $|x + mv + nz = p$. (d) Equation of a Plane in Intercept Form :

Equation of the plane which cuts off intercepts a, b, c from

axes is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

(e) Equation of a Plane in Normal Form :

If the length of the perpendicular

(f) Vectorial form of Normal equation of plane:

If \hat{n} is a unit vector normal to the plane from the origin to the **r1ane flnd d be** *the* **perpendicular distance of plane from origin**

then its vector equation is $\vec{r} \cdot \hat{n} = d$.

(g) Equation of a Plane through three points:

The eouation of the plane through three non-collinear points

$$
\left\langle x_1, y_1, z_1 \right\rangle, \left\langle x_2, y_2, z_2 \right\rangle \left\langle x_3, y_3, z_3 \right\rangle \text{ is } \left\langle \begin{array}{ccc} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{array} \right| = 0
$$

14. ANGLE BETWEEN TWO PLANES :

Consider two planes $ax + by + cz + d = 0$ and $a'x + b'y + c'z + d' = 0$.

Angle between these planes is the angle between their normals.

$$
\cos\theta = \frac{aa'+bb'+cc'}{\sqrt{a^2 + b^2 + c^2}\sqrt{a'^2 + b'^2 + c'^2}}
$$

Planes are perpendicular if aa' + bb' + cc' = 0 and they are parallel \cdot if $a/a' = b/b' = c/c'.$

Planes parallel to a given Plane :

Equation of a plane parallel to the plane $ax + by + cz + d = 0$ is $ax + by + cz + d' = 0$. d' is to be found by other given condition.

15. ANGLE BETWEEN A LINE AND A PLANE:

Let equations of the line and plane be $\frac{x-x_1}{\ell} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ and $ax + by + cz + d = 0$ respectively and θ be the angle which line makes with the plane. Then $(\pi/2 - \theta)$ is the angle between the line and the normal to the plane. Let equations of the line and plane be $\frac{x - x_1}{\ell} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$
ax + by + cz + d = 0 respectively and θ be the angle which
makes with the plane. Then $(\pi/2 - \theta)$ is the angle between the
and the normal to t

So
$$
\sin \theta = \frac{a\ell + bm + cn}{\sqrt{(a^2 + b^2 + c^2)}\sqrt{(l^2 + m^2 + n^2)}}
$$

Line is parallel to plane if $\theta = 0$

i.e. if $al + bm + cn = 0$.

Line is \perp **to the plane** if line is parallel to the normal of the plane

i.e. if
$$
\frac{a}{\ell} = \frac{b}{m} = \frac{c}{n}
$$
.

16. CONDITION IN ORDER THAT THE LINE MAY LIE ON THE GIVEN PLANE:

The line $\frac{x-x_1}{\ell} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ will lie on the plane Ax + By + Cz + D = 0 if **(a)** $A\ell + Bm + Cn = 0$ and **(b)** $Ax_1 + By_1 + Cz_1 + D = 0$ GIVEN PLANE :

The line $\frac{x-x_1}{\ell} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ will lie on the plane $Ax + By + Cz + D = 0$

if (a) $A\ell + Bm + Cn = 0$ and (b) $Ax_1 + By_1 + Cz_1 + D = 0$

17. POSITION OF TWO POINTS W.R.T. A PLANE :

Two points $P(x_1, y_1, z_1)$ & $Q(x_2, y_2, z_2)$ are on the same or opposite sides of a plane $ax + by + cz + d = 0$ according to $ax_1 + by_1 + cz_1 + d$ & $ax_1 + by_1 + cz_1 + d$ are of same or opposite signs.

18. IMAGE OF A POINT IN THE PlANE :

Let the image of a point $P(x_1, y_1, z_1)$

in a plane $ax + by + cz + d = 0$ is

 $Q(x_2, y_2, z_2)$ and foot of perpendicular

of point P on plane is $R(x_3, y_3, z_3)$, then

(a)
$$
\frac{x_3 - x_1}{a} = \frac{y_3 - y_1}{b} = \frac{z_3 - z_1}{c} = -\left(\frac{ax_1 + by_1 + cz_1 + d}{a^2 + b^2 + c^2}\right)
$$

\n(b)
$$
\frac{x_2 - x_1}{a} = \frac{y_2 - y_1}{b} = \frac{z_2 - z_1}{c} = -2\left(\frac{ax_1 + by_1 + cz_1 + d}{a^2 + b^2 + c^2}\right)
$$

\n**CONDITION FOR COPLANARITY OF TWO LINES :**
\nLet the two lines be

19. CONDITION FOR COPLANARITY OF TWO LINES:

Let the two lines be

$$
\frac{x-\alpha_1}{\ell_1^2} = \frac{y-\beta_1}{m_1} = \frac{z-\gamma_1}{n_1}
$$
 (i)

and

 $rac{x-\alpha_2}{\ell_2} = \frac{y-\beta_2}{m_2} = \frac{z-\gamma_2}{n_2}$ (ii)

 $\alpha_2 - \alpha_1$ These lines will coplanar if $\begin{bmatrix} \ell_1 \\ \end{bmatrix}$ ℓ_{2} the plane containing the two lines is $\beta_2 - \beta_1 \gamma_2 - \gamma_1$ m_1 n_1 = 0 m_2 n_2 $x - \alpha_1$ $y - \beta_1$ $z - \gamma_1$ ℓ_1 m₁ n₁ = 0 m_2 n_2 $\begin{array}{c|ccc} \epsilon_2 & m_2 & n_2 \end{array}$

20. PERPENDICULAR DISTANCE OF A POINT FR **PLANE** :

Perpendicular distance p, of the point $A(x_1, y_1, z_1)$ from the plane $ax + by + cz + d = 0$ is given by

$$
p = \frac{1ax_1 + by_1 + cz_1 + d1}{\sqrt{(a^2 + b^2 + c^2)}}
$$

Distance between two parallel planes $ax + by + cz + d_1 = 0$

& ax + by + cz + d₂ = 0 is
$$
-\left|\frac{d_1 - d_2}{\sqrt{a^2 + b^2 + c^2}}\right|
$$

21. A PLANE THROUGH THE LINE OF INTERSECTION OF TWO GIVEN PlANES :

Consider two planes

 $u = ax + by + cz + d = 0$ and $v = a' x + b' y + c' z + d' = 0$.

The equation $u + \lambda v = 0$, λ a real parameter, represents the plane passing through the line of intersection of given planes and if planes are parallel, this represents a plane parallel to them. $u = ax + by + cz + d = 0$ and $v = a'x + b'y + c'z + d' = 0$.
The equation $u + \lambda v = 0$, λ a real parameter, represents the passing through the line of intersection of given planes and if are parallel, this represents a plane parallel to the

22. BISECTORS OF ANGLES BETWEEN TWO PLANES :

Let the equations of the two planes be $ax + by + cz + d = 0$ and $a_1x + b_1y + c_1z + d_1 = 0.$

Then equations of bisectors of angles between them are given by

$$
\frac{ax + by + cz + d}{\sqrt{(a^2 + b^2 + c^2)}} = \pm \frac{a_1x + b_1y + c_1z + d_1}{\sqrt{(a_1^2 + b_1^2 + c_1^2)}}
$$

- **(a) Equation of bisector of the angle containing origin:** First make both constant terms positive. Then +ve sign give the bisector of the angle which contains the origin.
- **(b) Bisector of acute/obtuse angle** : First making both constant **terms positive,**

 $aa_1 + bb_1 + cc_1 > 0$ \Rightarrow origin lies in obtuse angle $aa_1 + bb_1 + cc_1 < 0 \implies$ origin lies in acute angle

PROBABILITY

- **1. SOME BASIC TERMS AND CONCEPTS**
	- **(a) An Experiment :** An action or operation resulting in two or more outcomes is called an experiment.
	- **(b) Sample Space :** The set of all possible outcomes of an experiment is called the sample space, denoted by S. An element of S is called a sample point.
	- **(e) Event :** Any subset of sample space is an event.
	- **(d) Simple Event :** An event is called a simple event if it is a singleton subset of the sample space S.
	- **(e) Compound Events:** It is the joint occurrence of two or more simple events.
	- **(f) Equally Likely Events:** A number of simple events are said to be equally likely if there is no reason for one event to occur in preference to any other event. **Example 20 Compound Events :** It is the joint occurrence of two or m simple events.
 SBG STUDY DEVALUATE: A number of simple events are sto be equally likely if there is no reason for one event to oce in preference to a
	- **(g) Exhaustive Events:** All the possible outcomes taken together or disjoint.
	- i **(h) Mutually Exclusive or Disjoint Events: If** two events cannot occur simultaneously, then they are mutually exclusive. If A and \overline{B} are mutually exclusive, then $A \cap B = \phi$.
	- (i) **Complement of an Event:** The complement of an event A, denoted by \overline{A} , A' or A^c , is the set of all sample points of the

space other then the sample points in A.

2. MATHEMATICAL DEFINITION OF PROBABILITY
Let the outcomes of an experiment consists of *n* exhaustive mutually

Exhaustive Events : At the possible outcomes taken together

in which an experiment can result are said to be exhaustive

or disjoint.
 (h) Mutually Exclusive or Disjoint Events : If two events cannot

occur simultane exclusive and equally likely cases. Then the sample spaces S has *n* sample points. If an event A consists of m sample points, $(0 \le m \le n)$, then the probability of event A, denoted by P(A) is defined \mathbf{F} to be m/n i.e. $P(A) = m/n$.

 \blacksquare

- (a) $P(S) = \frac{n}{n} = 1$ corresponding to the certain event.
- **(b)** $P(\phi) = \frac{0}{n} = 0$ corresponding to the null event ϕ or impossible event.
- **(c)** If $A_i = \{a_i\}$, $i = 1, \ldots, n$ then A_i is the event corresponding

to a single sample point a_i . Then $P(A_i) = \frac{1}{n}$.

(d) $0 \leq P(A) \leq 1$

3. ODDS AGAINST AND ODDS IN FAVOUR OF AN EVENT :

Let there be $m + n$ equally likely, mutually exclusive and exhaustive cases out of which an event A can occur in m cases and does not occur in n cases. Then by definition of probability of occurrences Cases out of which all event A can occur in in cases and do

occur in n cases. Then by definition of probability of occur
 $= \frac{m}{m+n}$

The probability of non-occurrence $= \frac{n}{m+n}$
 \therefore P(A) : P(A') = m : n

Thus the od

m m+n

The probability of non-occurrence $=$

 $P(A) : P(A') = m : n$

Thus the odd in favour of occurrences of the event A are defined by m : n i.e. P(A) : P(A'); and the odds against the occurrence of the event A are defined by $n : m$ i.e. $P(A') : P(A)$.

ADDITION THEOREM 4.

(a) If A and B are any events in S. then

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Since the probability of an event is a nonnegative number. it follows that

 $P(A \cup B) \leq P(A) + P(B)$

For three events A, B and C in S we have

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C)$

 $-$ P(C \cap A) + P(A \cap B \cap C).

LLEN

General form of addition theorem

For n events A_1 , A_2 , A_3 , A_n in S, we have $P(A_1 \cup A_2 \cup A_3 \cup A_4 \dots \cup A_n)$

$$
= \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k}) \dots
$$

 $+ (-1)^{n-1} P(A_1 \cap A_2 \cap A_3 \dots \cap A_n)$

(b) If A and B are mutually exclusive, then $P(A \cap B) = 0$ so that $P(A \cup B) = P(A) + P(B)$.

5. MULTIPLICATION THEOREM

Independent event:

So if A and B are two independent events then happening of B will have no effect on A.

Difference between independent & mutually exclusive event:

- **(i)** Mutually exclusiveness is used when events are taken from same experiment & independence when events one takes from different experiment. **Difference between independent & mutually exclusive e**
 (i) Mutually exclusiveness is used when events are taken from

experiment & independence when events one takes

different experiment.
 (ii) Independent events a
	- **(ii)** Independent events are represented by word "and" but mutually exclusive events are represented by word "OR".

(a) When events are independent:

 $P(A/B) = P(A)$ and $P(B/A) = P(B)$, then

 $P(A \cap B) = P(A)$. $P(B)$ OR $P(AB) = P(A)$. $P(B)$

(b) When events are not independent

The probability of simultaneous happening of two events A and B is equal to the probability of A multiplied by the conditional probability of B with respect to A (or probability of B multiplied by the conditional probability of A with respect to B) i. e

 $P(A \cap B) = P(A)$. $P(B/A)$ or $P(B)$. $P(A/B)$

OR

 $P (AB) = P(A)$. $P (B/A)$ or $P (B)$. $P (A/B)$ $\frac{1}{2}$ $\frac{1}{2}$

195

,

(c) Probability of at least one of the n Independent events If p_1 , p_2 , p_3 , p_n are the probabilities of n independent events A_1 , A_2 , A_3 A_n , then the probability of happening of at least one of these event is $1 - [(1-p_1)(1-p_2) \dots (1-p_n)]$ $P(A_1 + A_2 + A_3 + \ldots + A_n) = 1 - P(\overline{A}_1) P(\overline{A}_2) P(\overline{A}_3) \ldots P(\overline{A}_n)$ 6. CONDITIONAL PROBABILITY : If A and B are any events in S then the conditional probability of B relative to A is given by $P(B \cap A)$ $P(B/A) = \frac{P(A)}{P(A)}$, If $P(A) \neq 0$ 7. BAYE'S THEOREM OR INVERSE PBOBABIUTY: 8. Let A " A_2 , A_n be n mutually exclusive and exhaustive events of the sample space S and A is event which can occur with any of the events then $P\left(\frac{A_i}{A}\right) = \frac{P(A_i)P(A/A_i)}{P(A_i)}$ A $\sum_{i=1}^{n} P(A_i)P(A \mid A_i)$ $\sum_{i=1}^{\infty} P_i$ BINOMIAL DISTRIBUTION FOR REPEATED TRIALS Binomial Experiment : Any experiment which has only two outcomes is known as binomial experiment. Outcomes of such an experiment are known as success and failure. Probability of success is denoted by p and probability of failure by q. \therefore p + q = 1 If binomial experiment is repeated n times, then $(p + q)^n = {}^nC_0 q^n + {}^nC_1pq^{n-1} + {}^nC_2p^2q^{n-2} + \dots + {}^nC_r p^r q^{n-r} + \dots$ + $\binom{n}{n}$ pⁿ = 1 (a) Probability of exactly r successes in n trials = ${}^nC_p r q^{n-r}$ (b) Probability of at most r successes in n trails = $\sum_{\lambda=0}^{r} {^n}C_{\lambda}p^{\lambda}q^{n-\lambda}$.

(c) Probability of at east r successes in n trails = $\sum_{\lambda=0}^{n} {^n}C_{\lambda}p^{\lambda}q^{n-\lambda}$ g/Engleh.p65 **I** Engil **Book J**Formula er/Handbook_Matis/I
|
| **A** Sheet **I I** Marks Leader S IT Moon JEEKhammaan I.L
. (c) Probability of atleast r successes in n trails = $\sum_{n=1}^{n} C_{\lambda} p^{\lambda} q^{n-\lambda}$ (d) Probability of having I^* success at the r^{th} trials = p q^{r-1}. BAYE'S THEOREM OR INVERSE PBOBABILITY :
Let A₁, A₂,, A_n be n mutually exclusive and exhaustive exof the sample space S and A is event which can occur with
of the events then $P\left(\frac{A_i}{A}\right) = \frac{P(A_i)P(A/A_i)}{\sum_{i=1}^{n$

The mean, the variance and the standard deviation of binomial distribution are np, npq, \sqrt{npq} . 9. **SOME IMPORTANT RESULTS (a)** Let A and B be two events, then **(i)** $P(A) + P(\overline{A}) = 1$ **(ii)** $P(A + B) = 1 - P(\overline{A}\overline{B})$ **(iii)** $P(A/B) = \frac{P(A-B)}{P(B)}$ P(B) $P(A + B) = P(AB) + P(\overline{A}B) + P(A\overline{B})$ (v) $A \subset B \Rightarrow P(A) \leq P(B)$ (vi) $P(\overline{A}B) = P(B) - P(AB)$ (vii) $P(AB) \leq P(A) P(B) \leq P(A + B) \leq P(A) + P(B)$ **(viii)** $P(AB) = P(A) + P(B) - P(A + B)$ $f(x)$ P(Exactly one event) = $P(AB) + P(\overline{A}B)$ P(A) + P(B) - 2P(AB)= P(A + B) - P(AB)

(x) P(neither A nor B) = P(\overline{AB}) = 1 - P(A + B)

(xi) P($\overline{A} + \overline{B}$) = 1 - P(AB)

(b) Number of exhaustive cases of tossing n coins sime

(or of tossing a coin n times) = 2 (x) P(neither A nor B) = $P(\overline{AB}) = 1 - P(A + B)$ (xi) $P(\overline{A} + \overline{B}) = 1 - P(AB)$ **(b)** Number of exhaustive cases of tossing n coins simultaneously (or of tossing a coin n times) = $2ⁿ$ **(c)** Number of exhaustive cases of throwing n dice simultaneously (or throwing one dice n times) = $6ⁿ$ j **(d) Playing Cards** : **(i)** Total Cards: 52(26 red, 26 black) (ii) Four suits : Heart, Diamond, Spade, Club - 13 cards each (iii) Court Cards : 12 (4 Kings, 4 queens, 4 jacks) $\frac{1}{2}$ $\begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}$ (iv) Honour Cards : 16 (4 aces, 4 kings, 4 queens, 4 jacks) (vi) $P(AB) = P(B) - P(AB)$

(vii) $P(AB) \le P(A) P(B) \le P(A + B) \le P(A) + P(B)$

(viii) $P(AB) = P(A) + P(B) - P(A + B)$

(ix) $P(Exactly one event) = P(A\overline{B}) + P(\overline{A}B)$
 $= P(A) + P(B) - 2P(AB) = P(A + B) - P(AB)$

(x) $P(neither A nor B) = P(\overline{A}\overline{B}) = 1 - P(A + B)$

- **(e) Probability regarding n letters and their envelopes** : If n letters corresponding to n envelopes are placed in the envelopes at random, then ASSIMATION PLAT ARE
	- (i) Probability that all letters are in right envelopes $=\frac{1}{n!}$.
	- (ii) Probability that all letters are not in right envelopes = $1-\frac{1}{n!}$
	- (iii) Probability that no letters is in right envelopes

$$
=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\dots+(-1)^{n}\frac{1}{n!}
$$

(Iv) Probability that exactly r letters are in right envelopes

$$
-\frac{1}{r!}\left[\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + (-1)^{n-r} \frac{1}{(n-r)!}\right]
$$

alve da commelli su

1

,

Let
$$
u_i = \frac{d_i}{h} = \frac{x_i - a}{h}
$$

 $\overline{x} = a + \left(\frac{\Sigma f_i u_i}{N}\right)h$

(v) Weighted mean: If w_1, w_2, \ldots, w_n are the weights assigned to the values x_1, x_2, \ldots, x_n respectively then their weighted mean is defined as

Weighted mean =
$$
\frac{w_1x_1 + w_2x_2 + \dots + w_nx_n}{w_1 + \dots + w_n} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}
$$

(vi) **Combined mean :** If \bar{x}_1 and \bar{x}_2 be the means of two groups having n, and n₂ terms respectively then the mean (combined mean) of their composite group is given by combined mean **vi)** Combined mean: If \bar{x}_1 and \bar{x}_2 be the means of two g
having n_1 and n_2 terms respectively then the mean (combined
of their composite group is given by combined mean
 $= \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$
If t

$$
=\frac{\mathbf{n}_1\overline{\mathbf{x}}_1+\mathbf{n}_2\overline{\mathbf{x}}_2}{\mathbf{n}_1+\mathbf{n}_2}
$$

If there are more than two groups then,

combined mean =
$$
\frac{n_1\overline{x}_1 + n_1\overline{x}_2 + n_3\overline{x}_3 + \dots}{n_1 + n_2 + n_3 + \dots}
$$

- **(vii) Properties of Arithmetic mean :** j
	- Sum of deviations of variate from their A.M. is always zero i.e. $\Sigma(x, -\overline{x}) = 0$, $\Sigma f(x, -\overline{x}) = 0$
	- Sum of square of deviations of variate from their AM. is j minimum i.e. $\Sigma(x - \overline{x})^2$ is minimum
	- If \bar{x} is the mean of variate x, then A.M. of $(x, + \lambda) = \bar{x} + \lambda$ bestern restaut an A.M. of $(\lambda x) = \lambda \overline{x}$

A.M. of $(ax_i + b) = a\overline{x} + b$ (where λ , a, b are constant)

6\2016 17\Kota\JEEMAAnnee\$\L

• A.M. is independent of change of assumed mean i.e. it is not effected by any change in assumed mean. effected by any change in assumed mean.

l Engli 1**Book** Formula Mariell

 \mathbf{r}

~

201

Handbook

Method for determining mode:

- **(i) For tmgrouped dlst.** : The value of that variate which is repeated maximum number of times
- (ii) For ungrouped freq. dist. : The value of that variate which have maximum frequency.
- (iii) For grouped freq. dist. : First we find the class which have maximum frequency. this is model calss

$$
\therefore \text{ Mode} = \ell + \frac{f_0 - f_1}{2f_0 - f_1 - f_2} \times h
$$

where ℓ - lower limit of model class

 $f₀$ - freq. of the model class

- $f₁$ -freq. of the class preceeding model class
- $f₂$ freq. of the class succeeding model class

 h - class interval of model class

4. RElATION BETWEEN MEAN, MEDIAN AND MODE:

In a moderately asymmetric distribution following relation between mean, median and mode of a distribution. It is known as imprical formula. f_1 — freq. of the class preceeding model class
 f_2 — freq. of the class succeeding model class
 h — class interval of model class
 ELATION BETWEEN MEAN, MEDIAN AND MODE :

a moderately asymmetric distribution follo

 $Mode = 3 Median - 2 Mean$

Note : (i) Median always lies between mean and mode

(ii) For a symmetric distribution the mean, median and mode **are coincide.**

5. MEASURES OF DISPERSION:

The dispersion of a statistical distribution is the measure of deviation of its values about the their average (central) value.

Generally the following measures of dispersion are commonly used.

(i) Range

(ii) Mean deviation

(iii) Variance and standard deviation

(I) Range: The difference between the greatest and least values of variate of a distribution, are called the range of that distribution, If the distribution is grouped distribution, then its range is the difference between upper limit of the maximum class and lower limit of the minimum class,

Also, coefficient of range $=$ $\frac{1}{2}$ difference of extreme values $\frac{1}{\sqrt{1-\frac{1}{\pi}}}$ so, coefficient of range $=$ $\frac{1}{\pi} \frac{1}{\pi} \frac{$ sum of extreme values

(H) Mean deviation (M.D.) : The mean deviation of a distribution is, the mean of absolute value of deviations of variate from their statistical average (Mean, Median, Mode),

If A is any statistical average of a distribution then mean deviation about A is defined as

$$
\sum_{i=1}^{n} |x_i - A|
$$

Mean deviation $=\frac{i-1}{\cdot}$ (for ungrouped dist.)

Mean deviation =
$$
\frac{\sum_{i=1}^{n} |x_i - A|}{n}
$$
 (for ungrouped dist.)
Mean deviation =
$$
\frac{\sum_{i=1}^{n} f_i |x_i - A|}{N}
$$
 (for freq. dist.)

n

Note:- Is minimum when it taken about the median

Coefficient of Mean deviation =
$$
\frac{\text{Mean deviation}}{\text{A}}
$$

(where A is the central tendency about which Mean deviation is taken)

(ill) Variance and standard deviation : The variance of a distribution is, the mean of squares of deviation of variate from their mean. It is denoted by σ^2 or var(x).

The positive square root of the variance are called the standard deviation. It is denoted by σ or S.D.

Hence standard deviation = $+\sqrt{\text{variance}}$

Formulae for variance :

(I) for ungrouped d1st. :

$$
\sigma_x^2 = \frac{\Sigma(x_i - \overline{x})^2}{n}
$$

$$
\sigma_x^2 = \frac{\Sigma x_i^2}{n} - \overline{x}^2 = \frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2
$$

$$
\sigma_d^2 = \frac{\Sigma d_i^2}{n} - \left(\frac{\Sigma d_i}{n}\right)^2, \text{ where } d_i = x_i - a
$$

 (iii) For freq. dist. :

 $\sigma_x^2 = \frac{\Sigma f_i (x_i - \overline{x})^2}{N}$ N $\sigma_x^2 = \frac{\Sigma f_i x_i^2}{N} - (\overline{x})^2 = \frac{\Sigma f_i x_i^2}{N} - (\frac{\Sigma f_i x_i}{N})^2$ $\sigma^2 = \frac{\Sigma f_i d_i^2}{\sigma^2} - \left(\frac{\Sigma f_i d_i}{\sigma^2}\right)^2$ $d - N$ N $\sigma_u^2 = h^2 \left[\frac{\Sigma f_i u_i^2}{N} - \left(\frac{\Sigma f_i u_i}{N} \right)^2 \right]$ where $u_i = \frac{d_i}{h}$ (iii) Coefficient of S.D. = $\frac{\sigma}{\overline{x}}$ Coefficient of variation = $\frac{\sigma}{\overline{x}} \times 100$ (in percentage) $\sigma_x^2 = \frac{\Sigma f_i (x_i - \overline{x})^2}{N}$
 $\sigma_x^2 = \frac{\Sigma f_i x_i^2}{N} - (\overline{x})^2 = \frac{\Sigma f_i x_i^2}{N} - (\frac{\Sigma f_i x_i}{N})^2$

Sf d^2 (Sf d^2)²

Note :- $\sigma^2 = \sigma_x^2 = \sigma_d^2 = h^2 \sigma_u^2$

MATHEMATICAL REASONING

1. STATEMENT:

A sentence which is either true or false but cannot be both are called a statement. A sentence which is an exclamatory or a wish or an imperative or an interrogative can not be a statement.

If a statement is true then its truth value is T and if it is false then its truth value is F

2. SIMPLE STATEMENT :

Any statement whose truth value does not depend on other statement are called simple statement.

3. COMPOUND STATEMENT :

A statement which is a combination of two or more simple statements are called compound statement

Here the simple statements which form a compound statement are known as its sub statements COMPOUND STATEMENT :
A statement which is a combination of two or more simple statement
are called compound statement
Here the simple statements which form a compound statement as
as its sub statements
LOGICAL CONNECTIVES

4. LOGICAL CONNECTIVES :

The words or phrases which combined simple statements to form a compound statement are called logical connectives.

Note : If the compound statement contain n sub statements then its truth table will contain 2" rows.

6. **LOGICAL EQUIVALENCE:**

logically equivalent or simply equivalent if they have same truth values for all logically possibilities

Two statements S_1 and S_2 are equivalent if they have identical truth table i.e. the entries in the last column of their truth table are same. If statements S₁ and S₂ are equivalent then we write $S_1 \equiv S_2$

i.e. $|p \rightarrow q = \sim p \vee q$

7. **TAUTOLOGY AND CONTRADICTION:**

(i) Tautology: A statement is said to be a tautology if it is true for all logical possibilities

i.e. its truth value always T. it is denoted by t.

(Ii) Contradiction: A statement is a contradiction if it is false for all logical possibilities.

i.e. its truth value always F. It is denoted by c.

Note: The negation of a tautology is a contradiction and negation of a contradiction is a tautology

8. **DUAIJTY:**

Two compound statements S_1 and S_2 are said to be duals of each other if one can be obtained from the other by replacing \wedge by \vee and \vee by \wedge

If a compound statement contains the special variable t (tautology) and c (contradiction) then obtain its dual we replaced t by c and c by t in addition to replacing \wedge by \vee and \vee by \wedge .

Note:

- (i) the connectives \wedge and \vee are also called dual of each other.
- (ii) If $S^*(p,q)$ is the dual of the compound statement $S(p,q)$ then

(a) $S'(-p, -q) = -S(p, q)$ (b) $-S'(p, q) = S(-p, -q)$

- 9. **CONVERSE, INVERSE AND CONTRAPOSITIVE OF THE CONDITIONAL STATEMENT** $(p \rightarrow q)$ **:** if 3 (p,q) is the dual of the compound statement 3(p,q) then

(a) S*(~p, ~q) = ~S(p, q) (b) ~S*(p, q) = S(~p, ~q)
 SNUERSE, INVERSE AND CONTRAPOSITIVE OF
 SNUTIONAL STATEMENT (p → q):
 Converse : The converse of the
	- **(I) Converse** : The converse of the conditional statement **(i)** Converse: The converse of the conditional statement $p \rightarrow q$ is defined as $q \rightarrow p$
 (ii) Inverse: The inverse of the conditional statement $p \rightarrow q$ is $\frac{q}{s}$
	- defined as $-p \rightarrow -q$ 1
	- (iii) **Contrapositive:** The contrapositive of conditional statement $p \rightarrow q$ is defined as $\sim q \rightarrow \sim p$

15heetV Machel Lander

25¹ JEEIAdvanced) L

~ • • i

10. NEGATION OF COMPOUND STATEMENTS:

If p and q are two statements then

- **(i) Negation of conjunction:** $\neg (p \land q) = \neg p \lor \neg q$
- **(ii)** Negation of disjunction: $-(p \vee q) = -p \wedge -q$
- (iii) **Negation of conditional :** $\sim (p \rightarrow q) = p \land \sim q$
- (iv) **Negation of biconditional :** \sim (p \leftrightarrow q) = (p $\land \sim$ q) \lor (q $\land \sim$ p) we know that $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$ \mathbf{E}

I Book (Engl\Englah.p65 Formula Sket i Handbook_Mathel Fi
, Lander/ 1902/01/016-171 Koda \JEEA,Awaree() \L
|-
| \therefore ~(p \leftrightarrow g) = ~[(p \rightarrow g) \land (g \rightarrow p)] $\equiv \sim (p \rightarrow q) \vee \sim (q \rightarrow p)$ \equiv (p \land -q) \lor (q \land -p) **Note** : The above result also can be proved by preparing truth table for $-(p \leftrightarrow q)$ and $(p \land \neg q) \lor (q \land \neg p)$ **11. ALGEBRA OF STATEMENTS:** If p, q, r are any three statements then the some low of algebra of statements are as follow **(I) Idempotent Laws** : (a) $p \wedge p \equiv p$ (b) $p \vee p \equiv p$ **(ii) Comutative laws** : (a) $p \wedge q \equiv q \wedge p$ (b) $p \vee q \equiv q \vee p$ **(IU) AssocIative laws** : (a) $(p \wedge q) \wedge r = p \wedge (q \wedge r)$ (b) $(p \vee q) \vee r \equiv p \vee (q \vee r)$ **(Iv) Distributive laws** : (a) $p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$ (b) $p \wedge (q \wedge r) = (p \wedge q) \wedge (p \wedge r)$ (c) $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$ (d) $p \vee (q \vee r) = (p \vee q) \vee (p \vee r)$ **(v) De Morgan Laws** : (a) \sim (p \land q) = \sim p v \sim q (b) $\sim (p \vee q) \equiv \sim p \wedge \sim q$ (vi) Involution laws (or Double negation laws) : $\sim(-p) = p$ **(vii) Identity Laws** : If p is a statement and t and c are tautology and contradiction respectively then (a) $p \wedge t \equiv p$ (b) $p \vee t \equiv t$ (c) $p \wedge c \equiv c$ **(viii) Complement Laws:** (a) $p \wedge (-p) \equiv c$ (c) $(\sim t) \equiv c$ (b) $p \vee (-p) \equiv t$ (d) $(-c) \equiv t$ (d) $p \vee c \equiv p$ $\stackrel{\ast}{\mathsf{F}}$ (ix) Contrapositive laws: $\mathsf{p} \to \mathsf{q} = \mathsf{p} - \mathsf{p}$ (a) $(p \land q) \land r = p \land (q \land r)$

(b) $(p \lor q) \lor r = p \lor (q \lor r)$

(c) $p \land (q \lor r) = (p \land q) \lor (p \land r)$

(c) $p \land (q \land r) = (p \land q) \land (p \land r)$

(c) $p \lor (q \land r) = (p \lor q) \land (p \lor r)$

(d) $p \lor (q \lor r) = (p \lor q) \lor (p \lor r)$

japan

12. QUANTIRED STATEMENTS AND QUANTIRERS :

The words or phrases "All", "Some", "None", 'There exists a" are ex· amples of quantifiers.

A statement containing one or more of these words (or phrases) is a quantified statement.

Note: Phrases 'There exists a" and "Atleast one" and the word "some" have the same meaning.

NEGATION OF QUANTIRED sTATEMENTS:

- (1) 'None' is the negation of 'at 1east one' or 'some' or 'few' Similarly negation of 'some' is 'none'
- (2) The negation of "some A are B" or "There exist A which is B" is "No A are (is) B" or "There does not exist any A which is B". is "No A are (is) B" or "There does not exis
A which is B".

Negation of "All A are B" is "Some A are not B".
- (3) Negation of "All A are B" is "Some A are not B",

SETS

SET :

A set is a collection of well defined objects which are distinct from each other

Set are generally denoted by capital letters A, B, C, etc. and the elements of the set by a. b. c etc.

If a is an element of a set A, then we write $a \in A$ and say a belongs to A.

If a does not belong to A then we write $a \notin A$,

SOME IMPORTANT NUMBER SETS:

 $N = Set of all natural numbers$

 $=$ {1, 2, 3, 4,}

 $W = Set of all whole numbers$

 $= {0, 1, 2, 3, ...}$

Z or I set of all integers

 $= \{...,-3,-2,-1,0,1,2,3,...\}$ Solution Set of all natural numbers

= {1, 2, 3, 4,}

W = Set of all whole numbers

= {0, 1, 2, 3,}

Solution Set of all integers

= {.... -3, -2, -1, 0, 1, 2, 3,}

 Z^+ = Set of all +ve integers

$$
= \{1, 2, 3, \ldots\} = N.
$$

$$
Z^- = Set of all -ve integers
$$

$$
= (-1, -2, -3, \ldots)
$$

 Z_0 = The set of all non-zero integers. $= {\pm 1, \pm 2, \pm 3, \ldots}$

 $Q =$ The set of all rational numbers.

 $=\left\{\frac{\mathbf{p}}{\mathbf{q}}:\mathbf{p},\mathbf{q}\in\mathbf{I},\mathbf{q}\neq\mathbf{0}\right\}$

 $R =$ the set of all real numbers.

 $R-Q = The set of all irrational numbers$

METHODS TO WRITE A SET :

- **(I) Roster Method** : In this method a set is described by listing elements, separated by commas and enclose then by curly brackets
- **(8) Set Builder From** : In this case we write down a property or rule p Which gives us all the element of the set

 $A = \{x : P(x)\}\$

TYPES OF SETS :

Null set or Empty set : A set having no element in it is called an Empty set or a null set or void set it is denoted by ϕ or $\{\}$

A set consisting of at least one element is called a non-empty set or a non-void set.

Singleton : A set consisting of a single element is called a singleton set.

FInite Set : A set which has only finite number of elements is called a finite set.

Order of a finite set : The number of elements in a finite set is called the order of the set A and is denoted DIA) or n(A). It is also called cardinal number of the set. ite **Set** : A set which has only finite number of elements is contract that the set.
 Ler of a finite set : The number of elements in a finite set is conder of the set A and is denoted O(A) or n(A). It is also colinal nu

Infinite set : A set which has an infinite number of elements is called an infinite set.

k Ergil J 11Formula
|
|

ez:\Handbook_Macha\F

D16-171 Kash LEEKhaannaan Le

12016-1

! **I Mache ILlander**

Equal sets : Two sets A and B are said to be equal if every element of A is a member of B, and every element of B is a member of A. If sets A and B are equal. We write $A = B$ and A and B are not equal then $A \neq B$

Equivalent sets : Two finite sets A and B are equivalent if their number of elements are same

i.e. $n(A) = n(B)$

Note : Equal set always equivalent but equivalent sets may not be equal **Subsets** : Let A and B be two sets if every element of A is an element B, then A is called a subset of B if A is a subset of B. we write $A \subseteq B$ $A \subseteq B$

Mathematics *Handbook* **Proper subset :** If A is a subset of B and $A \neq B$ then A is a proper subset of B, and we write $A \subset B$ **Note-1** : Every set is a subset of itself i.e. $A \subset A$ for all A **Note-2** : Empty set ϕ is a subset of every set **Note-3** : Clearly $N \subset W \subset Z \subset Q \subset R \subset C$ Note-4 : The total number of subsets of a finite set containing n elements is 2n **Universal set:** A set consisting of all possible elements which occur in the discussion is called a Universal set and is denoted by U **Note** : All sets are contained in the universal set **Power set** : Let A be any set. The set of all subsets of A is called power set of A and is denoted by P(A) **Some Operation on Sets** :

- (i) **Union of two sets** : $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- (ii) **Intersection of two sets** : $A \cap B = \{x : x \in A \text{ and } x \in B\}$ mion of two sets : $A \cup B = \{x : x \in A \text{ or } x \in B\}$
tersection of two sets : $A \cap B = \{x : x \in A \text{ and } x \in B\}$
ifference of two sets : $A = B = \{x : x \in A \text{ and } x \notin B\}$
omplement of a set : $A' = \{x : x \notin A \text{ but } x \in U\} = U$
e-Morgan Laws : $(A \cup B)' = A'$
- (iii) **Difference of two sets** : $A B = \{x : x \in A \text{ and } x \notin B\}$
- (iv) **Complement of a set :** $A' = \{x : x \notin A \text{ but } x \in U\} = U A$
- (v) **De-Morgan Laws:** $(A \cup B)' = A' \cap B'$; $(A \cap B)' = A' \cup B'$
(vi) $A (B \cup C) = (A B) \cap (A C)$; $A (B \cap C) = (A B) \cup (A C)$
-
- (vii) **Distributive Laws** : $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$; $A \cap (B \cup C)$ $=(A \cap B) \cup (A \cap C)$
- (viii) **Commutative Laws**: $A \cup B = B \cup A$; $A \cap B = B \cap A$
- (ix) **Associative Laws** : $(A \cup B) \cup C = A \cup (B \cup C); (A \cap B) \cap C$ $= A \cap (B \cap C)$

$$
\frac{1}{8} \quad \text{(x)} \quad A \cap \phi = \phi \; ; \; A \cap U = A
$$

- $A \cup \phi = A$; $A \cup U = U$
- (xi) $A \cap B \subseteq A$; $A \cap B \subseteq B$
- (xii) $A \subseteq A \cup B$; $B \subseteq A \cup B$
- (xiii) $A \subseteq B \Rightarrow A \cap B = A$
- (xiv) $A \subseteq B \Rightarrow A \cup B = B$ E_{c} $\left[\text{km}\right]$ $N \subseteq B \Rightarrow N \cup B = B$

213

214

Japanes

makers

I

Mathematics Handbook

Skeri i kuchoch "Malah Formula Bosh Ergi" Ergint póls
1 eri Madiuli Shaqeri II
I 2016-171Koa LEEKAaroed) L **SOME IMPORTANT RESULTS ON NUMBER OF ELEMENTS IN SETS** : If A , B and C are finite sets, and U be the finite universal set, then (i) $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ (ii) $n(A \cup B) = n(A) + n(B) \Leftrightarrow A$, B are disjoint non-void sets. (iii) $n(A - B) = n(A) - n(A \cap B)$ i.e. $n(A - B) + n(A \cap B) = n(A)$ (iv) $n(A \triangle B) = No$. of elements which belong to exactly one of A or B $= n((A - B) \cup (B - A))$ $= n(A - B) + n(B - A)$ [\because $(A - B)$ and $(B - A)$ are disjoint] $= n(A) - n(A \cap B) + n(B) - n(A \cap B)$ $= n(A) + n(B) - 2n(A \cap B)$ $= n(A) + n(B) - 2n(A \cap B)$ (v) $n(A \cup B \cup C)$ $=n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ (vi) Number of elements in exactly two of the sets A, B, C $= n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$ (vii) number of elements in exactly one of the sets A , B , C $= n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(A \cap C)$ $+3n(A \cap B \cap C)$ (viii) $n(A' \cup B') = n((A \cap B)') = n(U) - n(A \cap B)$ (ix) $n(A' \cap B') = n((A \cup B)') = n(U) - n(A \cup B)$ (x) If A_1 , A_2 A_n are finite sets, then $n\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} n(A_{i}) - \sum_{i=1}^{n} n(A_{i} \cap A_{i})$ + $\sum_{1 \le i \le k \le n} n(A_i \cap A_j \cap A_k)$ - + $(-1)^{n-1} n(A_1 \cap A_2 \cap A_n)$ EL-__________________________________ ~ vi) Number of elements in exactly two of the sets A, B, $S = n(A \cap B) + n(B \cap C) + n(C \cap A) - 3n(A \cap B \cap C)$
vii) number of elements in exactly one of the sets A, B, C
= $n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n$
+ $3n(A \cap B \cap C)$
viii) $n(A' \cup B') = n$

RELATIONS

INTRODUCTION :

Let A and B be two sets. Then a relation R from A to B is a subset of $A \times B$. thus, R is a relation from A to $B \Leftrightarrow R \subset A \times B$.

Total Number of Realtions: Let A and B be two non-empty finite sets consisting of m and n elements respectively. Then $A \times B$ consists of m 1 ordered pairs. So total number of subsets of $A \times B$ is 2^{mn} .

Domain and Range of a relation: Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called to domain of R, while the set of all second components or coordinates of the ordered pairs in R is called . the range of R. ond components or coordinates of the ordered pairs in R is
range of R.
Thus, Domain $(R) = \{a : (a, b) \in R\}$
and, Range $(R) = \{b : (a, b) \in R\}$
evident from the definition that the domain of a relation from *t*
subset of A and its

Thus, Domain $(R) = {a : (a, b) \in R}$

and, Range $(R) = \{b : (a, b) \in R\}$

It is evident from the definition that the domain of a relation from A to B is a subset of A and its range is a subset of B. [~]

Inverse Relation : Let A, B be two sets and let R be a relation from a set A to a set B. Then the inverse of R, denoted by R^{-1} , is a relation from B to A and is defined by

 $R^{-1} = \{(b, a) : (a, b) \in R\}$

 $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$ Clearly,

Also, $Dom(R) = Range(R^{-1})$ and Range $(R) = Dom(R^{-1})$

TYPES OF RElATIONS: i

In this section we intend to define various types of relations on a given setA.

Void Relation: Let A be a set. Then $\phi \subset A \times A$ and so it is a relation on A. This relation is called the void or empty relation on A.

Universal Relation : Let A be a set. Then $A \times A \subseteq A \times A$ and so it is a relation on A. This relation is called the universal relation on A. a relation on A. This relation is called the universal relation on A.

Mathematics

Book Englishgan.p65

s1.Formula

ectifications Mattelli
|-
|

er i Martel Sheet U jagar)

iota i utilijekommendi i

~ • • t

Identity Relation: Let A be a set. Then the relation $I_A = \{(a, a) : a \in A\}$

on A is called the identity relation on A.

In other words, a relation I_a on A is called the identity relation if every element of A is related to itself only.

Reflexive Relation: A relation R on a set A is said to be reflexive if every element of A is related to itself.

Thus, R on a set A is not reflexive if there exists an element $A \in A$ such that $(a, a) \notin R$.

Every Identity relation is reflexive but every reflexive ralation is not identity.

Symmetric Relation : A relation R on a set A is said to be a symmetric relation iff

 $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in A$

i.e. $a R b \Rightarrow b R a$ for all $a, b, \in A$.

Transitive Relation: Let A be any set. A relation R on A is said to be a transitive relation iff (e. a R b \Rightarrow bRa for all a, b, \in A.
 Fransitive Relation : Let A be any set. A relation R on A is so transitive relation iff

(a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for all a, b, c \in A

e. a R b and

(a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for all a, b, c \in A

i.e. $a \, R \, b$ and $b \, R \, c \Rightarrow a \, R \, c$ for all $a, b, c \in A$

Antisymmetric Relation: Let A be any set. A relation R on set A is said to be an antisymmetric relation iff

 $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$ for all $a, b \in A$

Equivalence Relation : A relation R on a set A is said to be an equivalence relation on A iff

(i) it is reflexive i.e. (a, a) \in R for all $a \in A$

(ii) it is symmetric i.e. (a, b) \in R \Rightarrow (b, a) \in R for all a, b \in A

(iii) it is transitive i.e. (a, b) \in R and (b, c) \in R \Rightarrow (a, c) \in R for all $a, b, c \in A$.

It is not neccessary that every relation which is symmetric and transitive is also reflexive.

ì