SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

TEC-503	TANK DESIGNATION	118	Printed Pages
Par	per Code & Roll I	No. to be filled in y	our Answer Book
3	Roll No.		The same s
2.	Odd Seme	ester Examinati	on-2016
	B.Tec	h. (Semeste	er-V)
	VLSI	TECHNOLO	GY
Time: 3	Hours]	l l	Maximum Marks : 10
Note : At	tempt all quest	ions.	
1. At	tempt any four	questions:	[5×4=20
(a)	What is IC	's? Describe the ty	ypes of IC's?
(b)	What is sin	gle crystal growth s that allow the cry	? Describe one of the vstal to be grown.
(c)	oxidation p	dry and wet oxiderocess.	1

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- (e) Explain the diffusion controlled case and reaction controlled case with help of Deal Grove's Model.
- (f) Calculate the oxidation time required for the thermal oxidation of 100Å and 5000Å thickness at 1000°C? Given that B=5.2×10⁵Å²/min. and A=111Å/min.
- 2. Attempt any four questions:

[5×4=20]

- (a) Explain the typical Ion Implanter system in detail with suitable diagram.
- (b) For boron diffusion in silicon at 1000°C, the surface concentration is maintained at 10¹⁹cm⁻³ and diffusion time is 1 hour. Find out total no. of dopant per unit area and a location where the dopant concentration reaches to 10¹⁵cm⁻³. (Diffusion coefficient=2×10⁻¹⁴cm²/sec,erfc⁻¹(10⁻⁴)=2.75)
- (c) Explain the various types of diffusion systems with help of suitable diagram.
- (d) Define the process of epitaxial. Compare between MBE and CVD process.

- (e) Explain molecular beam epitaxial method of epitaxial growth with suitable diagram.
- (f) Explain ion range theory. What are the advantages of ion implantation over diffusion process?
- 3. Attempt any two questions: $[10 \times 2 = 20]$
 - (a) What is wet etching process? What are the factors affecting etch rate and compare wet etching with dry etching process?
 - (b) Why is higher degree of anisotropy required for in VLSI fabrication? And also write the chemical reactions involved in dry etching of SiO₂ and Si by using CF₄ plasma.
 - Explain dry etching with its working. Calculate the resolution and depth of focus for KrF light source (γ =248 nm) with NA=0.6 and assume that K₁=0.75 & K₂=0.5.
- 4. Attempt any two questions: $[10 \times 2 = 20]$
 - (a) What is Metallization? Write the applications and also explain metallization problems.

TEC-503/1280 (3) [P.T.O.]

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- (b) Give the various fabrication steps of PNP transistor with diagram and brief explanation.
 - (c) Explain the MOS memory IC technology. Compare DRAM and SRAM.
 - 5. Attempt any two questions: [10×2=20] -
 - (a) (i) Write a short note on VLSI assembly technologies.
 - (ii) Describe packaging design consideration in brief.
 - (b) Describe the different VLSI assembly technologies. What is yield loss in VLSI?
 - (c) (i) What is importance of reliability requirements?
 - (ii) How is accelerated testing performed?

TEC-503/1280