TEC-602	202	Printed Pages: 4
Paper Code & Ro	oll No. to be filled in	your Answer Book
Roll No.	- Initial Indiana	
В.1	Tech. (VI - S	em.)
Even Ser	nester Examina	ntion - 2016
VLS	SI CIRCUIT DI	ESIGN
ALEX TIME (MICE		this is a second

[Time: 3 Hours]

[Maximum Marks:100]

Note: Attempt all questions. Assume data wherever necessary.

- Attempt any four parts of the following: (5x4=20)
 - (a) Explain MOS capacitor under external bias conditions and also draw capacitance –voltage curve for MOS capacitor with P-type semiconductor as substrate material?
 - (b) Explain the threshold voltage of a MOS device and explain its significance?
 - (c) What are the advantages of BICMOS technology over CMOS technology? Also implements NOT gate by using BICMOS technology?
- (d) What is pass transistor? Explain with suitable example also implements half adder circuit by using NMOS pass transistor logic?

[P.T.O.]

- (e) Explain constant-voltage scaling & constantfield scaling of MOSFET?
- Attempt any four parts of the following: (5x4=20)
 - (a) Describe CMOS transmission gate (CMOS TG) as a constant resistive element for logic '1' transfer?
 - (b) Implements full adder by using CMOS logic technology? Also draw the coloured stick diagram for 2-inputs NOR gate?
 - (c) Derive expression for pull-up to pull-down ratio for NMOS inverter driven by another NMOS inverter?
 - (d) Derive an expression for calculation of rise time and fall rise of a CMOS inverter?
 - (e) Describe the concept of noise margin for CMOS inverter? Calculate the noise margin of CMOS inverter with V_{DD}=5V,V_{T,P}= -1V,V_{I,N}=1V,K_N=210μA/V²& K_P=210μA/V²?
- 3. Attempt any two parts of the following: (10x2=20)
 - (a) Draw and explain the SR latch using CMOS logic design and based on NOR gate? Also draw the coloured stick diagram for above SR latch circuit?

- (b) Explain structure and operation of 'D' flip-flop by using CMOS technology with minimum no. of transistor? Also writes its applications?
 - (c) A function is given as below:

$$F=[A.(D+E)+B.C]$$

- (i) Realize this function using CMOS technology?
- (ii) Draw the coloured layout diagram for above CMOS logic circuit in part (i)?
- Attempt any two parts of the following: (2x10=20)
 - (a) Explain the operation of 6-Transistor SRAM with circuit diagram? Also writes difference between DRAM & SRAM?
 - (b) Discuss the different applications and advantages of FPGA? What are the different of simple Xilinx FPGA?
 - (c) Design and implement the following multiple output combinational circuits using PAL:
 - (i) Z=A'.B.C.D'+A'.B.C'.D+B.C.D'+A.B'.D'
 - (ii) Y=A.B.C.D'+A'.B.C'.D+B.C.D'+A.B'.D'

TEC-602/1940

(3)

[P.T.O.]

- 5. Attempt any two parts of the following: (10x2=20)
 - (A) (i) Define the terms Controllability and observability for VLSI circuits with example?
 - (ii) Explain concepts of pipelining?
 - (B) (i) What do you mean by electric logical stuck-at-0 & stuck-at-1 faults, explain with suitable example?
 - (ii) Explain in details Built-in self testing (BIST) for circuit testing in VLSI?
- (C) Derive the expression for channel length modulation? Consider an n-channel MOSFET that measured to have I_{DS} = 100μA and V_{GS} = 2V, V_{DS} = 3V in first case and then consider I_{DS} = 104μA and V_{GS} = 2V, V_{DS} = 4V in second case. Calculate the Value of channel length Modulation index (λ).

----X----

I is more extracted and condition to total

CARCD ARE DESCRIATE

Y=AB.C.D. A.B.C.D. B.C.D. +A.E.D.