Roll No. to be filled in your Answer Book
Roll No.

Semester: V
B.Tech Examination (2014-2015)
SYSTEM ENGGINERING

Time: 3 Hours MM. 100

Note:- Attempt All Questions. All Questions carry equal marks.

Q1. Attempt any four Questions of the following: 4x5=20

a. Draw F-I analog system for the following figure 1.

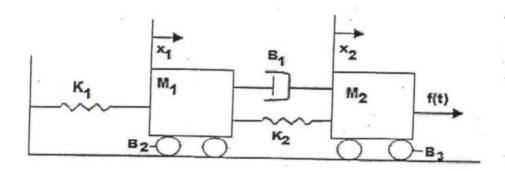
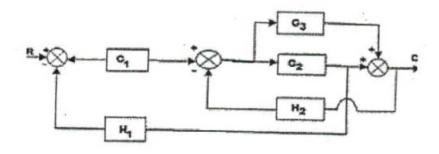
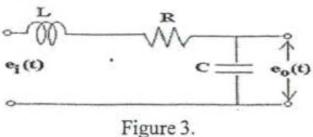
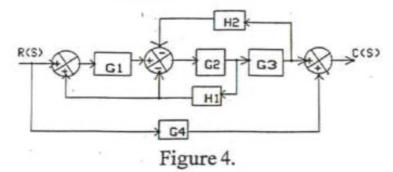


Figure. 1

b. Find C/R using reduction techniques in figure 2.


Figure . 2

- List the advantages and disadvantages of a closed loop system.
- Discuss the term transient response and steady state response with suitable diagram.
- e. Write the analogous electrical equations and elements in force voltage and force current for mechanical translational system.
- f. Explain the significance of the following aspects in designing control systems
 - (i) Stability
 - (ii) Disturbance rejection
 - (iii) Sensitivity and Robustness.
- Q2. Attempt any four Questions of the following: 4x5=20
- a. Explain lag-lead compensation for a linear control system.
- b. For the electrical circuit shown in Fig.3 find the transfer

function
$$\frac{E_n(s)}{E_i(s)}$$

- c. Discuss tuning of PID controller.
- d. Develop the signal flow graph and determine the overall transfer function of the given system in the figure 4. below using Mason's Gain formula

- e. Consider a feedback control system with a disturbance input. Show that feedback reduces the effect of disturbance on the controlled output.
- f. What is Control System & Give the main classification of control systems?
- Q3. Attempt any two parts of the following 2x10=20
- a. Consider the mechanical system of figure.5 Obtain the transfer

 $G(s) = \frac{X(s)}{F(s)}, \label{eq:general}$ function function assuming zero initial conditions. Draw the corresponding electric network using the force-voltage analogy.

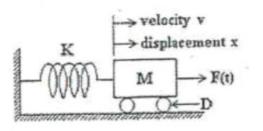
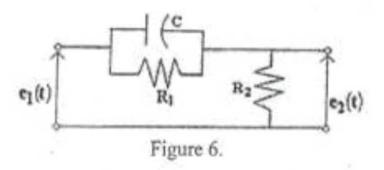



Figure 5.

- b. Explain sampling theorem and sample and hold.
- Explain stability analysis of sampled data control system with suitable examples.
- Q4. Attempt any two parts of the following 2x10=20
- a. What is the purpose of linearization? What is the process of linearization of a non linearization system model?
- Explain canonical variable diagonalization

c. Obtain the transfer function for the lead compensator network of figure.6 in terms of the system time $\alpha = \frac{R_2}{R_1 + R_2}$ constant $\tau = CR_1$ and $\alpha = \frac{R_2}{R_1 + R_2}$. Draw the pole-zero plot of the transfer function.

Q5. Attempt any two parts of the following 2x10=20

- a. What is the Popov's stability Criteria? Explain with examples?
- b. Find out state equation from the given transfer function

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 9}{5s^5 + 8s^4 + 24s^3 + 34s^2 + 23s + 6}$$

c. what is the significance of Lyapunov function with respect to the stability concept?