SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

TEE-601

1041

Even Semester Examination 2018-19

B. Tech. (Electrical and Electronics Engg.) (SEMESTER-VI)

POWER SYSTEM ANALYSIS

Time: 03:00 Hours

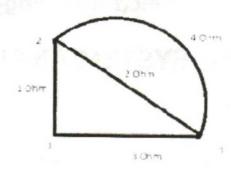
Max Marks:100

Note: Attempt all questions, the marks assigned to each question is indicated at question itself

Attempt any four parts.

 $(5 \times 4 = 20)$

- (a) The positive, negative and zero sequence reactance of a 20 MVA, 13.2 KV synchronous generator are 0.3 pu, 0.2 pu, and 0.1 pu respectively. The generator is solidly grounded and is not loaded. A line-to-ground fault occurs on phase a. Neglecting all resistance, determine the fault current.
- (b) Why do refer to analyze unsymmetrical faults by symmetrical component methods?
- (c) Mention two main objective of short circuit analysis. Draw a zero-sequence network for a star connected generator with zero sequence impedance Zg0 when the neutral is grounded through impedance Zn.
- (d) What do you understand by short-circuit KVA? Explain. And also explain the transient in R-L circuit of transmission line due its impedances.
- (e) A three- phase, wye- connected, 6.25 KVA, 220 V synchronous generator has a reactance of 8.4 ohm per phase and armature current 4.1 Amp. Using the rated KVA and Voltage as base values, determine the per-unit value of reactance and armature current. Then refer these per-unit values to a 230 V, 7.5 KVA as base.


TEE-601/980 (1) [P.T.O.]

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

Attempt any four parts.

(5×4=20)

(a) Explain the Z Bus algorithm with all types of modifications. Calculate Z bus for following 3- bus power system diagram using Z Bus algorithms.

- (b) A 20 MVA, 6.6 KV star connected generator has positive, negative and zero sequence reactance of 30%, 25% and 7% respectively. A reactor with 5% reactance based on the rating of the generator is placed in the neutral to ground connection. A line-to-line fault occurs at the terminals of the generator when it is operating at rated voltage. Find the fault current.
- (c) Derive the formula for fault current, fault-bus voltages and current through the lines for a 3-phase symmetrical fault at a bus in a power system using Zbus.
- (d) What are steps used to find Ybusmatrix? Take a suitable example for explanation.
- (e) Bus voltage at bus-1 and bus-2 in atwo-bus power system with a purely reactive transmission line between bus-1 and bus-2 are 1.05/_-100 and 1/_000 respectively. In what direction real and reactive power will flow? Explain why?
- Attempt any two parts.

 $(10 \times 2 = 20)$

(a) A synchronous generator and motor are rated as 30MVA, 13.2KV and both have sub-transient reactance of 20%. The line connecting them has a reactance of 10% on the same base of machine rating. The motor is drawing 20 MW at 0.8 leading P.F and terminal voltage of 12.8 KV when a symmetrical three phase fault occurs at the motor terminals. Find the sub-transient current in the generator, motor and fault by using the internal voltage of the machine.

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- (b) Draw the flowchart for load flow solution by Gauss Seidel Iterative method and explain.
- (c) The following is the system data for a load flow solution:

The line Admittance:			The schedule of active and reactive powers					
Bus From	code	Admittance	Bus Code	P	Q	V	Remarks	
1	2	2-j8.0	1	_	-	1.06	Slack	
1	3	1-j4.0	2	0.5	0.2	1+j0.0	PQ	
2	3	0.666-j2.664	3	0.4	0.3	1+j0.0	PQ	
2	4	1-j4.0	4	0.3	0.1	1+j0.0	PQ	
3	4	2-j.80						

Determine the voltage at the end of first iteration using Gauss-Seidel method. Take $\alpha = 1.6$.

Attempt any two parts.

 $(10 \times 2 = 20)$

- (a) With the neat algorithm, explain the computational solution for load flow solution using Newton-Raphson iterative method when the system contains all types of buses.
- (b) Describe equal area criteria for transient stability analysis in power system.
- (c) Derive swing equation for a synchronous machine used for stability studies in power system.

Attempt any two parts.

 $(10 \times 2 = 20)$

- (a) Derive wave equation for uniform transmission lines.
- (b) How to protect power system equipment against travelling waves? Explain indetail.
- (c) Discuss the behavior of travelling wave when it reaches.
 - (i) Short circuit transmission line and
 - (ii) Line terminated with an inductance.

---- X -----