TEC-601		18	Pri	nted Pages: 5
Paper Co	de & Roll	No. to be fil	led in your Ar	swer Book
Roll N	0. //	slugn forva	sept many	
vol to resum	B.Te	ech. (VI	- Sem.)	(2)
Eve	en Seme	ester Exan	nination - :	2016
			CHNIQU	ES
Time: 3 Ho	ours]	ragistika ud oshojim ba	[Maximun	n Marks :100]
Note: Atten			rund yan it	
1. Atten	npt any F	our parts:-	Explain aco	(5x4=20)
all a (a) abina sva v a	Drive an	n expression ngular wave	for propagati guide.	on of TM wave
			d clean diagra icrostrip line	am the working
(c) 2 cm.	Guide.	The radiu	ng through a	Circular Wave nide is 5 cm.
ily resonator			Versit riple of	
de at 10 GHz	nm mo	GHz	a aşedaya re	
			rt gnicsiq yo	
TEC-601/106	0	(1)		[P.T.O.]

- (iii) wave impedance.
- (d) Write short note on power transmission and power loss in rectangular waveguide.
- (e) What are the advantages of microwaves over low frequency waves?
- (f) The terminating load of UHF transmission line with characteristics impedance $Z_0 = 50 \Omega$, working at 300 MHz is $(50+j50) \Omega$. Calculate the VSWR and reflection coefficient.
- Attempt any Four parts:- (5
 - (a) Explain attenuation in circular waveguide.
 - (b) With the help of Maxwell's equations prove that the TEM wave cannot propagate in a waveguide.
 - (c) Drive an expression for the propagation of TE wave in rectangular cavity resonator.
 - (d) A cavity resonator with dimensions a= 2 cm,
 b= 1 cm is excited by TE₁₀₁ mode of 20 GHz.
 Calculate the length of the cavity.
 - (e) Write note on quality factor of a cavity resonator.
- (f) A circular wave guide has a radius of 3 cm and is used as a resonator for TM₀₁₁ mode at 10 GHz by placing two perfectly conducting plates at TEC-601/1060 (2)

its two ends. Determine minimum distance between two end plates.

- 3. Attempt any Two parts:- (10x2=20)
 - (a) With the help of scattering matrix explain why a hybrid E-H plane tee is referred to as a Magic Tee?
 - (b) What are the properties of scattering matrix? Explain the working of a two-hole Directional Coupler. Drive its scattering matrix.
 - (c) Explain the concept of Faraday rotation. Explain the operation of any one microwave component that makes use of Faraday rotation.
- 4. Attempt any Two parts:- (10x2=20)
 - (a) Compare the power ratio and RF Substitution methods of measuring Attenuation provided by a microwave component.
 - (b) Explain frequency pulling and frequency pushing as related to a magnetron. A normal circular magnetron has the following parameters:

Inner radius = $R_a = 0.15 \text{ m}$

Outer Radius R = 0.45 m

TEC-601/1060

(3)

[P.T.O.]

Magnetic Flux Density B = 1.2 mWb/m²

perveen live and plate

Calculate:

- (i) cut-off voltage.
- (ii) cut-off magnetic flux density if beam voltage is 6000 V.
- (c) Explain the methods for the measurement of medium microwave power, high microwave power and impedance.
- 5. Attempt any Two parts:- (10x2=20)
 - (a) What are the high frequency limitations of conventional tubes? Explain how these limitations are overcome with the use of microwave tubes?
 - (b) What is velocity modulation? How is it different from normal modulation? Explain how velocity modulation is utilized in Klystron amplifier?
 - (c) Differentiate between a klystron and reflex klystron. A two cavity Klystron amplifier has the following specifications;

THE SOLVIORS

Beam Voltage = 900 V

Beam Current = 30 mA

Frequency = 8 GHz

Gap Spacing in each cavity = 1 mm

Spacing between centers of cavities = 4 Cm

Effective Shunt impedance = R_{sh} = 40 k Ω

Calculate:

- (i) The electron velocity.
- (ii) dc transit time.
- (iii) Maximum Input voltage.
- (iv) Voltage gain.

----X----