TEC-502

1064

Odd Semester Examination 2018-19

B.TECH. (EEE/EN) (SEMESTER-V)

DIGITAL SIGNAL PROCESSING

Time: 03:00 Hours Max Marks : 100

Note: All Questions Are Compulsory.

Attempt any four of the following:

[4 x 5= 20]

- (a) State the condition for a digital filter to be causal and stable?
- (b) State the necessary and sufficient condition for the stability of LTI systems.
- (c) Show that the output of an LTI system can be expressed in term of its unit impulse response.
- (d) For each impulse response determine the system is i) stable ii) causal
 - (i) $h(n) = \delta(n) + \sin \pi n$
 - (ii) h(n) = 2 n u(-n)
- (e) Find the convolution x(n) * h(n), where $x(n) = a^n u(n)$, $h(n) = \beta^n u(n)$
- Attempt any four of the following:

[4 x 5= 20]

- (a) Differentiate between DIT and DIF FFT algorithm.
- (b) Obtain direct cascade realization of the system $H(Z) = (1+5Z^{-1}+6Z^{-2})(1+Z^{-1})$.
- (c) Prove that an FIR filter has linear phase if the unit sample response satisfy the condition h(n)=h(N-1-n)
- (d) Why impulse invariant method is not preferred in the design of high pass IIR filter?
- (e) Draw the butterfly operation in DIT and DIF algorithm?

[P.T.O.]

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

Attempt any two of the following:

[2 x 10 = 20]

- (a) What is the reason that FIR filters are always stable? Also write the properties of FIR filter.
- (b) Write on optimum approximation of FIR filters?
- (c) Draw the direct form implementation of the FIR system having difference equation y(n) = x(n)-2x(n-1)+3x(n-2)-10x(n-6)
- Attempt any two of the following:

[2 x 10 = 20]

- (a) Write short notes on Walsh and Hardmard Coding.
- (b) Convert the analog filter H(s) = 0.5 (s+4) / (s+1)(s+2) using impulse invariant transformation T=0.31416s
- (c) Derive bilinear transformation for an analog filter with system function H(s) = b/ (s+ a)
- Attempt any two of the following:

[2 x 10 =20]

- (a) Develop a decimation-in-frequency FFT algorithm for N = 8.
- (b) Compute the DFT of the sequence x(n)= [1 0 10 1 0 1 0] using DIT FFT algorithm.
- (c) What are the application of adaptive filtering to echo cancellation and equalization.

TEC-502/1820

The state of the s