SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

79	r Saudja	Printed Pag
Roll No. to be filled		
emester Exami	ination	-2016
ech. (Seme	ster-	V)
L SIGNAL P	ROCE	SSING
	Roll No. to be filled mester Examineter Examineter	Roll No. to be filled in you mester Examination ech. (Semester-L SIGNAL PROCE

Note: Attempt all questions.

- 1. Attempt any four parts of the following: $[5 \times 4 = 20]$
 - (a) Compute the 4-point DFT of $Cos(n\pi/4)$.
 - (b) Find the DFT of the following sequence and also find its amplitude and phase spectrum

$$x(n)=\{1\ 1\ 2\ 2\ 3\ 3\}, N=6.$$

- (c) State and prove following properties of DFT.
 - (i) Circular convolution
 - (ii) Time reversal
 - (iii) Circular correlation

TEC-502/1640

(1)

[P.T.O.]

- (d) Compute (a) linear, (b) circular periodic convolution of the two sequences x₁(n)= { 1 2 3 4} and x₂(n)= { 1 1 2 2}. (c) also find circular convolution using DFT and IDFT.
- (e) Find the response of time invariant system with impulse response $h(n)=\{1,2,1,-1\}$ & input signal $x(n)=\{1,2,3,6\}$
- (f) Derive the relation between DFT and Z-transform.
- 2. Attempt any four parts of the following: [5x4=20]
 - (a) What is FFT? Why it is needed? List its applications.
 - (b) How many multiplications and additions are required to compute N-point DFT using Radix-2 FFT algorithm?
 - (c) Compute DFT of $x(n)=\{1,2,3,4,4,3,2,1\}$ using Radix-2 DIT FFT algorithm.
 - Prove that the multiplication of DFT's of two sequences is equivalent to DFT of circular convolution of two sequences.

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- (e) Write a short note on Goertzel & Chirp Z algorithms.
- (f) Find the DFT of two real sequence using only one FFT flow graph

$$x_1(n) = \{1 \ 1 \ 1 \ 1\}, x_2 = \{2 \ 1 \ 2 \ 1\}.$$

- 3. Attempt any two parts of the following: [10x2=20]
 - (a) An LTI system is described by the equation y(n)+2y(n-1)-y(n-2)=x(n)
 - (b) Determine the lattice coefficients corresponding to the FIR system with the system function H(z)=1+7/9 Z⁻¹+3/5 Z⁻²
 - Obtain Direct form I, II, cascade & parallel form realization for the following system: Y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)
- 4. Attempt any two parts of the following: $[10\times2=20]$
 - (a) Compare Butterworth and chebyshev approximation techniques of ilter design.

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

(b) Design a filter with

$$H_d(w) = \begin{cases} e^{-j3w} & -\frac{\pi}{4} \le w \le \frac{\pi}{4} \\ 0 & \frac{\pi}{4} \le w \le \pi \end{cases}$$

Using Hamming window with M = 7

- (c) Explain process of window functions and what are types of window functions and also explain its frequency domain characteristics.
- 5. Attempt any two parts of the following: $[10\times2=20]$
 - (a) Explain Discrete Cosine Transform. Also write its applications.
 - (b) Design the Hilbert transforms and its frequency response. What are the applications of Hilbert transform.
 - (c) Compute the Walsh transform of the sequence {8 5 -1 3 }.

reproceeding techniques of their design