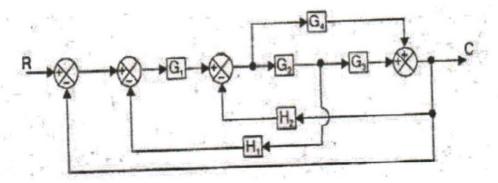
SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

Roll No.

(SEM. V) (ODD SEM) EXAMINATION, 2019-20
B.Tech.
AUTOMATIC CONTROL SYSTEM

Marks: 100

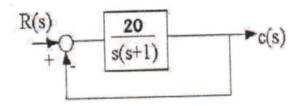

Total no. of printed pages: 2

Note: Attempt all questions. All questions carry equal marks.

Q1. Attempt any four parts:

5x4 = 20

- (a) Explain different block reduction techniques for control system
- (b) Calculate the Transfer function of the given block diagram.



- (c) Explain the force -voltage analogy in the electrical circuit.
- (d) Describe the rule of Block Reduction diagram in the control system.
- (e) Describe the rotational mechanical system with it's transfer function.

Q2. Attempt any four parts:

5x4 = 20

(a) The given block diagram. Find the value of natural frequency, damping frequency, maximum overshoot, rise time, settling time, peak time and steady state error of the system.

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

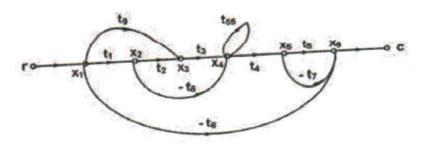
- (b) Discuss the Time response of a second order control system subjected to a unit step input function and also sketch the time response diagram.
- (c) Explain proportional integral control and determine the steady state error.
- (d) Explain Static and Dynamic error coefficient's in the control system.
- (e) The open loop transfer function of a unity feedback control system is given below:
- $G(s) = K *(s+2) / (S^3 + \lambda s^2 + 4s + 1)$ calculate the value of k and λ such that the closed-loop unit step response has natural frequency 3 rad/sec. and damping factor is 0.2.

Q3. Attempt any two parts:

10x2 = 20

(a) Using Routh-Hurwitz criterion determine the relation between K and T so that unity feedback control system whose open loop transfer function given below is stable

$$G(s)=K / s[s(s+10)+T]$$


- (b) Sketch the root locus plot for thr system having open loop transfer function is given by G(s) H(s) = K / [s(s+4)(s²+4s+13)].
- (c) Construct Bode plot and determine the gain margin, phase margin and stability of the system.

$$G(s)H(s) = 4/[s(1+0.5s)(1+0.08s)]$$

10x2 = 20

Q4. Attempt any two parts:

- (a) Explain phase- lag compensation network and calculate it's transfer function.
- (b) The open loop transfer function of a unity feedback control system is given by G(s) = K / C[s(s+2)] the system is to have 25% maximum overshoot and peak time 1 sec. Determine the value of K and tachometer feedback constant $K_{t_{\perp}}$
- (c) Find the transfer function of the given signal flow graph.

Q5. Attempt any two parts:

10x2 = 20

- (a) Write down the properties of state transition matrix.
- b) Discuss the controllability and observability in a control system.
- The transfer function of a control system is given by for controllability and observability.