-501	13	Printed Pages :
Roll No. to be fille	ed in your Answer Bo	ook
Roll No.		
	Semester: V	
B. Tech End	Semester Examina	tion Dec 2014
AUTOMA'	TIC CONTROL	SYSTEMS

Time: 3 Hours MM. 100

Q.1 Attempt any four parts (5x4=20)

- Define analogous systems. Out of two electrical analogies for mechanical system. Discuss force voltage analogy.
- (2) What do you understand by observer system? Explain in brief.
- (3) The characteristic equation of given system is

$$S^4 + 6S^3 + 11S^2 + 6S + K = 0$$

- Using the Routh stability criterion, determine the range of 'K' for which the system will be stable.
- (4) Determine the solution of state equation

$$\Box$$
=AX+Bu, if X (0) =X₀

In the time interval $t = [t_e \ t_f]$.

- (5) Derive the formula for peak overshoot, rise time and peak time.
- (6) Explain the effect of feedback on sensitivity, gain, and system stability.

Q.2 Attempt any four parts (5x4=20)

(1)Using block diagram reduction technique. Determine the ratio y_m/r, for the system representation in given figure.

- (2)Discuss the functioning of hydraulic proportional controller
- (3) Write short notes on rules of root locus.
- (4)Determine the value of force applied from left side of the given figure

- (5) Write short note on polar and inverse polar plots.
- (6) Determine error coefficient for the system having.

$$G(S)/H(S) = (S+2)/S (1+0.5S) (1+0.2S)$$

Q.3 Attem pt any two parts (10x2=20)

 Establish the correlation between the time response and frequency response analysis & suitably explain with diagrams.

- (2) Consider a type -1 unity feedback system with an open loop transfer function: G(s) = K/s(s+1)
 It is desired to have the velocity error constant K=10 and the phase margin of the system be at least 45°. Design a suitable lead compensator.
- (3) Using nyquist criterion investigate the stability of a closed loop control system whose open loop transfer.

$$G(s) H(s) = K/s (sT_1+1) (sT_2+1)$$

Q.4 Attempt any two parts (10x2=20)

- (1) What are controllability & observability of control system? Give the methods of their testing? What is the importance of controllability and observability in the design of control system?
- (2) Sketch the asymptotic Bode plot for the transfer function given below.

$$G(s)/H(s) = 2(s+0.25)/s^{2}(s+1) (s+0.5)$$

From the bode plot determine

- (i) the phase cross over frequency
- (ii) the gain cross over frequency
- (iii) the gain margin
- (iv) the phase margin

Is the system stable?

(3) Discuss the working of the lag lead compensator. Sketch the bode plot of lag lead compensator. Give design steps of a lag compensator.

Q.5 Attempt any two parts (10x2=20)

- (1) Construct the signal flow graph & obtain the state model for $C(s)/R(s) = 3/s^4 + 2s^3 + 3s + 2$
- (2) For the open loop transfer function draw the root locus and determine the value of K

At s=-2 and comment as the stability & time response of the system.

$$G(s) H(s) = K(s+1)/(s^2+0.4s+0.4)$$

(3)Discuss the PD, PI &PID controllers with their application &their error constant