SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

Subject Code: TCS-403

Roll No. to be	filled in your	Answer Book			
Roll No.					
		B.Tech	. 2		
Brach name :	Computer So	cience & Engineering			Semester: IV
Subject name	: Theory of A	Automata & Formal I	anguages(S	Subject	code: TCS-403)
					and the state of the

Time- 3 Hours

Max marks: 100

NOTE:

PAPER ID-TCS-403

All questions are compulsory.

ii. Draw diagrams wherever necessary.

iii. All questions carry equal marks.

Q1. Attempt any FOUR parts of the following:

(5X4=20)

(A) Design a DFA $L = \{ x \mid x \text{ does not end with } 001 \}$

(B) Construct a Moore machine to determine residue mod 3 for binary number.

(C) Define the following.

Chomsky Normal form

II. Greibach Normal form

(D) Construct the context free grammar (CFG)equivalent to a regular expression $(011+1)^*(01)^*$

(E) Consider the following production:

S→aAS | a

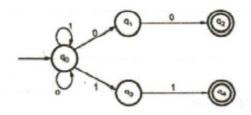
A→SbA | SS | ba

Find out LMD,RMD

(F) .Transform the grammar with productions:

S→abAB

A→bAB | ^

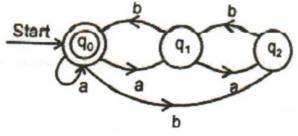

B→BAa | ^ | A into Chomsky normal form

Q2. Attempt any FOUR parts of the following:

(5X4=20)

(A) Convert the given NFA to equivalent DFA

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM


a.

- **(B)** Design a DFA which accepts even number of 0's and even 1's.
- (C) Design a Turing machine for $L = \{a^n b^n c^n\}$ where $n \ge 1$.
- **(D)** Design a PDA for the language $L = \{a^nb^{2n}\}$ where $n \ge 1$
- (E) Explain P and NP class problem in detail?
- (F) Design a Turing machine which recognizes the set of all even length palindromes over $\{0,1\}$

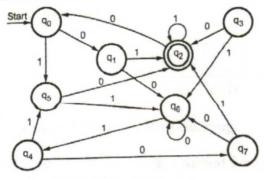
Q3. Attempt any TWO parts of the following:

(10X2=20)

- (A) Write Short note on
 - i) Decidibility
 - ii) Halting Problem
- **(B)** Design a Turing machine which recognizes the input language having a substring as 101 and replace every occurrence of 101 by 110.
- (C) Find the regular expression for the language accepted by the following automata.

Q4. Attempt any TWO parts of the following:

(10X2=20)


- (A) Give an example of language which is accepted by PDA but not by DPDA. Also design the PDA for that language.
- (B) Consider the regular expression R

(a+b)*(aa+bb)(a+b)*

Which described the set of all words over $\Sigma = \{a,b\}$ containing either two consecutive a's or two b's. Construct a DFA that will accept the same set of words

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

(C) Construct the minimum state automaton for the following transition diagram

Q5. Attempt any TWO parts of the following:

(10X2=20)

(A) Given a grammar, make non-deterministic finite automata and convert it to deterministic form:

$$S\rightarrow 0S \mid 1A \mid 1$$

 $A\rightarrow 0 \mid 0A \mid 1S$

(B) Design a DFA for following (1+01)*(0+00)(1+10)*

(C) Consider following NFA with ^ convert it to its equivalent DFA

Input State	a	b	c	۸
P	P	q	r	Ø
q	q	r	Ø	p
r	r	Ø	p	q
