SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

TEE 301

Roll No.

ODD SEMESTER EXAMINATION 2019-20 B. TECH III SEM ECE/EEE (Old Syllabus)

NETWORK ANALYSIS AND SYNTHESIS

Time: 3 HOURS

Total Marks: 100

Total no. of printed pages: 3

Attempt all the questions. All questions carry equal marks

Q1. Attempt any four parts of the following:

(5*4)

(a) Define the following terms

(i) Branch (ii) Sub graph (iii) Node (iii) Tree

(b) Draw the oriented graph of a network with fundamental cut-set matrix given as below:

Twigs(1,2	,3,4)		Links(5,6,7)				
	1	2	3	4	5	6	7	
	1	0	0	0	-1	0	0	
	0	1	0	0	1	0	1	
	0	0	1	0	0	1	1	
	0	0	0	1	0	1	0	

(c) For the resistive network shown in Figure, draw a graph, select a tree and obtain tie-set matrix. Write down the KVL equations from the tie-set matrix

(d) Derive the relation between branch voltage matrix, twig voltage matrix and node voltage matrix of a network.

(e) Find i_1 in the circuit shown in the figure, using nodal analysis. Assume the supply voltage $V(t)=20 \cos(4t)$ volts.

 $V(t) \qquad \begin{array}{c|c} & & & & \\ & \downarrow & & \\ & & \downarrow & \\ & & i_{I} & \\ & & & \\ \end{array} \qquad \begin{array}{c|c} & & & \\ & \downarrow & \\ & & \downarrow \\ & & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & \downarrow & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & \downarrow & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} & & \\ & & \\ & & \\ \end{array} \qquad \begin{array}{c|c} &$

P.T.O

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

Q2. Attempt any four parts of the following:

(5*4)

(a) Find the voltage across -j20 Ω capacitor using superposition theorem in below Figure.

All impedance values are in ohms.

- (b) Prove that the power transfer to the load becomes maximum when the load impedance isequal to the complex conjugate of the Thevenin's impedance.
- (c) Compute the current in 23 Ωresistor using superposition theorem forthecircuit shown

- (d) State and explain Thevenin's theorem with an example.
- (e) State and prove Millman's theorem. Also, find the current through RL in the network shown in the figure using Millman's theorem.

Q3. Attempt any two parts of the following:

(10*2)

(a) Draw the pole-zero diagram for the given network function and hence obtain v(t).

$$V(s) = \frac{4(s+2)s}{(s+1)(s+3)}$$

(b) Enlist the properties of driving point function. Also, check the stability criteria of the polynomial by applying the Routh-Hurwitz criterion in

$$P(s) = s^6 + s^5 + 3s^4 + 3s^3 + 3s^2 + 2s + 1$$

(c) Draw the Bode plot for

$$G(s) = \frac{20}{s(s+2)(s+10)}$$

From the Bode plot also determine i) Phase crossover frequency ii) Gain crossover frequency iii) Gain margin iv) Phase margin v) Stability

P.T.O

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

Attempt any two parts of the following: Q4.

(10*2)

(a) Find the Z- parameters for the following circuit. Express ABCD parameters in terms of h parameters.

- (b) Find input impedance, output impedance, open-circuit impedance and short circuit impedance in terms of h-parameters and T-parameters.
- (c) Explain the property of reciprocity of two-port networks. State the condition of reciprocity in terms of Z,Y and T parameters.

Attempt any two parts of the following: Q5.

(10*2)

(a) An impedance is given by

$$z(s) = \frac{8(s^2 + 1)(s^2 + 3)}{s((s^2 + 2)(s^2 + 4))}$$

Realise the network in Foster I, II and Cauer I, II forms.

(b) A function is given by $Z(s) = \frac{s^3 + 5s^2 + 9s + 3}{s^3 + 4s^2 + 7s + 9}$

Find the positive realness of the function.

(c) Obtain the expression for resonant frequency, bandwidth and Q-factor for parallel R-L-Ccircuit.