TEE-301 (ECE)

1281

Odd Semester Examination, 2017-18

B.TECH. (SEMESTER-III)

NETWORK ANALYSIS AND SYNTHESIS

Time: 03:00 Hours

Max Marks: 100

Attempt any four of the following :

[5X4]

- (a) What is the fundamental loop matrix and how it is formed?
- (b) Define the term: Tree, Co Tree, Tie set &cut set.
- (c) Write the matrix node equation using the nodal analysis & the matrix loop equation using the loop analysis in graph theory.
- (d) List the essential properties of a linear network system.
- (e) For the graph shown in figure, consider the tree formed by branches (2, 3, 4), using this tree write A, B₁

Attempt any four of the following :

[5X4]

- (a) State and explain Thevinin's Theorem.
- (b) Verify the reciprocity theorem for the circuit shown in the figure.

- (c) What is maximum power transfer theorem and prove that the overall efficiency of circuit supplying maximum power is 50%.
- (d) Find the Norton equivalent across the point a-b

- (e) State and prove Millman's Theorem for ac voltage source.
- 3. Attempt any two of the following:

[10X2]

(a) Obtain Z parameter of the network shown in fig whether the network shown is symmetrical or reciprocal or not.

(b) Determine the h parameter of the network shown in fig.

(c) For the network shown in fig Calculate

- (i) Z parameters
- (ii) Y parameters
- (iii) ABCD parameters
- (iv) h parameters
- 4. Attempt any two of the following :

[10x2]

- (a) Find the laplace transform of the function:
 - (i) Impulse function
 - (ii) Unit step function
 - (iii) Ramp function
 - (iv) Parabolic function
- (b) Find the inverse laplace transform of the given function and draw the pole zero diagram

$$H(s) = \frac{s(s+1)}{(s+4)(s^2+6s+5)}$$

(c) Determine inverse laplace transform of the following function using convolution integral.

$$F(s) = F_1(s).F_2(s) = \frac{s+1}{s(s^2+4)}$$

Attempt any two of the following :

[10x2]

(a) For the network function given below. Synthesize in foster form one and cauer form one.

$$Y(s) = \frac{2(s+1)(s+3)}{(s+2)(s+4)}$$

- (b) An impulse is applied to the input of a system and the output is observed to be the time function e^{-2t}. Find the transform function of the system and check the stability of the system by pole zero plot.
- (c) Realize the following RC driving point impedance function in foster I form and cauer II form:

$$Z(s) = \frac{s^2 + 4s + 3}{s^2 + 4s}$$
