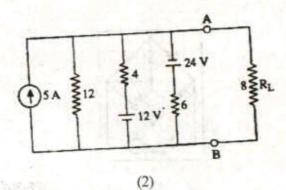
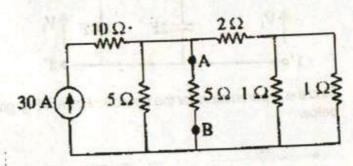

EE-3	01-B	10	T and the second	106	4	P	rinted Pages: 4
Paper C	ode &	Roll	No. to	be filled	d in you	r Answe	er Book
Rol	ll No.						
		в.т	ech.	II Ye	ar III	Sem.	raid (A)
	Even	End	Sem	ester	Exam	ination	1-2015
				- olosoo t			HESIS
				LIGE	- AITE	Inc	
Time: 3 Hours]						[Maxin	num Marks :100
Answer	Anyl	Four					(4x5=20)
l. [Draw a	n or			from th	e comp	olete incidence
	1	2	3	4	5	6	
		0	0	1	-1	0	
MY	1 -	-1	0	0	0	-1	
	0	1	-1	0	1	0	
	0	0	1	-1	0	1	
2.	Draw t	hea	raph of	f the cir	cuit-1 s	shown h	elow and draw
			ble tre		ount 1		cion and aran
				1	14.2	R II	
				/ 1	1		
		1		, De .)E1 35	相	
		1		64	/	The	
			-0	X cacus	٦		
			-				
				(1	and the		TEE-301-B / 1850

- Define the following terms:
 - (i) Tree
 - (ii) Co-tree
 - (iii) Connected & Unconnected Graph
 - (iv) Planar & non-planar Graph
 - (v) Cut-set matrix
- Differentiate between loop analysis and nodal analysis.
- List four important properties of a driving point impedance function of an RC network.


Answer Any Four:

(4x5=20)


 Find Thevenin's equivalent circuit for the network shown in Fig. which contains a current controlled voltage source (CCVS).

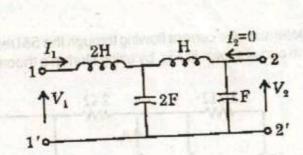
 Use Millman's theorem, to find the voltage across and current through the load resistor R_L in the circuit of Fig.

 Determine the current flowing through the 5&! resistor in the circuit shown in Fig. by using Norton's theorem.

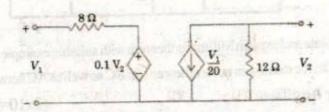
- State and explain Millmans theorem with suitable example
- Derive maximum power theorem for DC as well as AC network.

Answer Any Two:

(2x10=20)


- Determine the stability of the systems whose characteristic equations are
 - (i) $s^4+8s^3+18s^2+16s+5=0$.
 - (ii) $s^4+2s^3+3s^2+4s+5=0$.
- Design a constant k type band pass filter section to be terminated in 600 ohm resistance having cut off frequencies of 2kTlz and 5kHz
- Draw the pole zero diagram for the given network function and obtain the time domain response i(t)=

$$\frac{(5s)}{(s+1)(s^2+4s+8)}$$


Answer Any Two:

(2x10=20)

 Find open circuit transfer impedance V₂/I₁ and open circuit voltage ratio V₂/V₁ for the ladder network shown in Fig.

Find the Z-parameters for the network shown in Fig. given below

- Determine the expression for z-parameters of Lattice network.
 Answer Any Two: (2x10=20)
- 1. Synthesize the given function $F(s) = \frac{3(s+2)(s+4)}{s(s+3)}$ in a Foster and a Cauer forms, if
 - (i) If F(s) is an impedance function.
 - (ii) If F(s) is an admittance function.
- Design a Constant-K band pass filter with cut-off frequency of 3kHz and 7.5 kHz & nomial characteristic impedance or R₀=900Ω.
- 3. Synthesize in Foster II form Z(s)=

$$\frac{(s+5)(s+7)}{(s+1)(s+6)(s+8)}$$

—x—

TEE-301-B / 1850

(4)