TME-302

1309

Odd Semester Examination 2018-19

B.TECH. (AE) (SEMESTER-I)

ENGINEERING THERMODYNAMICS

Time: 02:00 Hours

Max Marks: 50

Note: Attempt ALL the questions. Marks are shown against each question. Assume any missing data suitably.

Attempt any FOUR of the following :

(2.5x4=10)

- (a) What is Heat engine? Explain with the help of diagram.
- (b) What do you understand by Thermodynamic path, process and cycle?
- (c) What is the principle of entropy increase?
- (d) A Carnot engine works between temperature limits of 825° C and 125° C. The engine receives 3600 kJ of heat per minute. Determine the work output and amount of heat rejected to the sink per second.
- (e) What is Helmholtz and Gibb's function?
- (f) What are the limitations of first law of thermodynamics?
- 2. Attempt any One of the following :

(10x1=10)

- (a) In a steam power plant the turbine receives 60 kg/minute steam at a speed of 5 m/s and 840 kJ/kg enthalpy. The steam leaves with a velocity of 3000 m/minute and 2640 kJ/kg enthalpy. The heat losses from turbine are 1260 kJ/min. Calculate the power output of turbine.
- (b) What is Clausius statement? Prove that violation of Clausius statement leads to violation of Kelvin-Plank statement.

TME-302/1740

(1)

[P.T.O]

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

TME-302/1740

3.	Attempt any TWO of the following :			(5x2=10 Marks)
	(=)	What do you understand by Carnot Theorem and its corollaries? Explain with the help of suitable diagrams.		
	(a)			
	(b)	What is Clausius inequality?		
	(c)	Explain:		
		(i)	Thermodynamic systems,	
		(ii)	Macroscopic approach,	
		(iii)	Control volume.	
4.	Atte	Attempt any TWO of the following : (5x2=10 Marks)		
	(a)	A heat engine is supplied with 2512 kJ/min of heat at 650° C. Heat rejection takes place at 100° C. Specify which of the following heat rejections represent a		
		reversible, irreversible and impossible result :		
		(i)	867 kJ/min	
		(ii)	1494 kJ/min	
		(iii)	1015 kJ/min.	
	(b) Explain:			
		(i)	Internal Energy.	
		(ii)	Enthalpy,	
		(iii)	First law of thermodynamics.	
	(c)	Explain available energy and unavailable energy for a heat engine with the help of suitable diagram.		

(2)

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- Write short notes on any FOUR of the following:
- (2.5x4=10 Marks)

- (a) Thermal Reservoir.
- (b) Quasi static process.
- (c) Tds equation.
- (d) Refrigerator and its C.O.P.
- (e) Concept of Continuum.
- (f). Reversible and irreversible process

----X----