

1037/1039

Odd Semester Examination, 2017-18

B.TECH. (SEMESTER-III) (EEE/ECE)

COMPUTER BASED NUMERICAL TECHNIQUES

me: 03:00 Hours

Max Marks: 75

ote - Attempt all questions.

Attempt any three parts of the following:

[5x3=15]

- (a) Explain the method of Newton Raphson for computing roots. Apply it for finding x from x* 25=0
- (b) Find a real root of the equation cosx = 3x 1 correct to 3 decimal places using iteration method.
- (c) Find a real root of the equation $x^3 x 1 = 0$ by Bisection method upto 2 decimal places.
- (d) Find $\int_0^1 \frac{1}{1+x^2} dx$ by Trapezoidal rule.
- (e) Find a positive real root of the equation x log 10 x = 1.2 = 0 by Bisection-Method Correct to 3 decimal places.

Attempt any three parts of the following:

(5x3=15)

- (a) Evaluate $\int_0^0 \frac{dx}{1+x^2}$ by using Weddle's Rule
- (b) Find the velocity at t=4 sec. from the following table:

Time(t) 1 2 4 8 10
Distance(x) 0 1 5 21 27

(c) For the differential equation : $\frac{dy}{dx} = x - y^2$ y (0)=0

Calculate y(0.2) by Picard method to third approximation

(d)	The distance	covered by	an	athelete	for	the	50	meter	race	5	given	in	the	following
	table :													

Determine the speed of athelete at 5 sec. correct to two decimals.

(e) Evaluate
$$\int_{3}^{5.2} \log x \, dx$$
, by Numerical Integration.

Attempt any two parts of the following:

[7.5x2=15]

(a) Find
$$\frac{dy^2}{dx}$$
 at $x = 0.1$ from the following table:

(5) A river is 80 m wide. The depth 'y' of the river at a distance 'x' from one bank is given by the following table:

Find the approximate area of cross-section of the river.

(c) Using Newton Divided difference formula, calculate the value of f(6)from the following data:

Attempt any two parts of the following:

[7.5x2=15]

 Using Gauss Backward interpolation formula, find the population for the year 1936 given that

- (b) What is statistical quality control ? write the importance of SAMPLING in quality control.
 - (c) Prove that (i) $\Delta \log f(x) = \log [1 + \Delta f(x)/f(x)]$
 - (ii) $E = 1 + \Delta$
- Attempt any two parts of the following:

 $[7.5 \times 2 = 15]$

- (a) A manufacturer claims that only 4% of his product supplied by him are defective. A random sample of 600 products contains 36 defective. Test the claim of manufacturer.
- (b) Apply Gauss –Seidal iteration method to solve the following equations(Only two approximations):

$$20x + y - 2z = 10$$

 $3x + 20y - z = -18$
 $2x - 3y + 20z = 52$

(c) Fit a straight line to the following data using Principle of Least square :

----X----

Suggested replacements/ corrections in out of syllabus questions in the subject 1CS-301/TCS-305(CBNT)

Q2 (b)	Find the cubic polynomial which takes the following values:									
100 M	X:	0	1	2	3					
	V.	1	2	1	10					
	У.		-	ulina table i	-					

Q2 (c) Using Bessel's formula, find f(25) from the following table :

X : 20 24 28 32 f(x): 2854 3162 3544 3992

Q3 (a) Find dy²/dx must read as dy/dx.

Q3 (c) From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age of 45

age. 45 50 55 60 65

Premium: 114.84 96.16 83.32 74.48 68.48

Q5 (b) Find the least square fit of the form $y = a + hx^3$ to the following data

	4	0	7
×	-1	-	3
	2	5	