TMA-201	71	Printed Pages: 5
Paper Code & Ro	II No. to be filled in	n your Answer Book
Roll No.		
В.7	Гесh. (II - S	em.)
Even Sen	nester Examina	ation - 2016
	MATHEMATICS	S-II

[Time: 3 Hours] [Maximum Marks: 100]

Note: Attempt all questions. The choice of questions is internal as indicated.

- Q1. Attempt any four of the following: (5x4=20)
 - Find the value of λ for which the differential equation (xy²+λx²y)dx+(x+y)x²dy=0 is exact.
 Solve the equation for this value of λ.
 - (b) Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \sin(\log x^2)$
 - (c) Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + y = \tan x$
 - (d) Solve the differential equation by removing the first derivative.

$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$
TMA-201/5920 (1) [P.T.O.]

(e) The equations of Motions of a particle are given by $\frac{dx}{dt} + \omega y = 0$ & $\frac{dy}{dt} - \omega x = 0$ Find the path of the particle and show that it is

Find the path of the particle and show that it is a circle.

- (f) Solve: (D³-D) $y = 2x+1+4\cos x+2e^x$
- Q2. Attempt any four of the following: (5x4=20)
 - (a) Find the Laplace transforms of $\frac{\cos at \cos bt}{t}$
 - (b) Find the Laplace transform of the following periodic function $F(t) = \begin{cases} t & o < t < \pi \\ n t & n < t < 2\pi \end{cases}$
 - (c) Evaluate: $\int_{0}^{\infty} te^{3t} \sin t \, dt$
 - (d) Find the inverse Laplace transform of $\log \left\{ \sqrt{\frac{s+1}{s-1}} \right\}$
 - (e) State Convolution theorem and hence find $L^{-1} \left\{ \frac{1}{s^2(s^2+1)} \right\}$

 (f) Solve the differential equation using Laplace transform method

$$\frac{d^3y}{dt^3} + 2\frac{d^2y}{dt^2} - \frac{dy}{dt} - 2y = 0,$$
where $y = 1$,
$$\frac{dy}{dt} = 2 \text{ and } \frac{d^2y}{dt^2} = 2 \text{ at } t = 0$$

- Q3. Attempt any two of the following: (10x2=20)
 - (a) (i) Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5}$
 - (ii) Test the convergence of the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^{n^2}$
 - (b) Discuss the convergence of the series $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots \infty$
 - (c) (i) Show that the given series is Uniformly Convergent.

$$\sum_{n=1}^{\infty} \frac{\sin(x^2 + nx)}{n(n+2)} \text{ for all real } x$$

TMA-201/5920

(3)

[P.T.O.]

- (ii) Examine the convergence of the series $2 \frac{3}{2} + \frac{4}{3} \frac{5}{4} + \dots \infty$
- Q4. Attempt any **two** of the following: (10x2=20)
 - (a) Find a Fourier series of a function. $f(x) = x - x^2, \quad -\pi \le x \le \pi \text{ .Hence show that}$ $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$
 - (b) Solve the partial differential equation $\frac{\partial^3 z}{\partial x^3} 3 \frac{\partial^3 z}{\partial x \partial y^2} + 2 \frac{\partial^3 z}{\partial y^3} \sqrt{(x+2y)} + e^{x+y}$
 - (c) Find the half range sine series for the function f(x) = (2x-1); 0 < x < 1
- Q5. Attempt any two of the following: (10x2=20)
 - (a) A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form $y = a \sin \frac{\pi x}{l}$ from which it is released at a time t = 0. Show that the displacement of any point at a distance 'x' from one end at time 't' is given by $y(x,t) = a \sin \left(\frac{\pi x}{l}\right) \cos \left(\frac{\pi ct}{l}\right)$
 - Solve the following equation by the method of Separation of Variables

TMA-201/5920

$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$$
, where $u(o, y) = 8e^{-3y}$

(c) Find the temperature in a bar of length 2 whose ends are kept at zero temperature and lateral surface insulated if the initial

temperature is
$$\sin\left(\frac{\pi\alpha}{2}\right) + 3\sin\left(\frac{5\pi\alpha}{2}\right)$$
.

----X----