Paper	Code & Roll No. to be filled in y	our Answer Book
	Roll No.	
dailent, fie	Odd Semester Examinati	on-2016
	B.Tech. (Semeste	er-I)
MATHEMATICS - I		
[Time: 3 H	ours] [N	Maximum Marks:100
	mpt all questions.	
1. Atte	mpt any four questions:	(b) [5x4=20]
(a)	Using elementary transform	ations find the inverse
	of $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$	ogsid (s)
(b)	Find the values of a,b, for systems has a	
-	(i) unique solution	
n ereda	(ii) no solution, and(iii) infinite solutions	
TMA 101/51	3x-2y+z=b, (1)	081210 ID TO 1

$$5x-8y+9z=3$$

(c) Examine the following vectors for ling dependence and independence. If dependent, for relation between them

$$U = t^3 + 4t^2 - 2t + 3$$

$$V = t^3 + 6t^2 - t + 4$$

$$W = 3t^3 + 8t^2 - 8t + 7$$

(d) Verify Cayley-Hamilton theorem and hence id the inverse of the following matrix:

WOOTH WAR

air itiros o Angumuna.

$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -2 & 2 \end{bmatrix}$$

(e) Diagonalize the following matrix:

$$\begin{bmatrix} 3 & 2 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(f) Find the eigen values and eigen vectors of sollowing matrix:

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \text{ is a substitute transfer to the substitute of the subst$$

- 2. Attempt any four questions: $[5 \times 4 = 20]$
 - (a) If $y=\sin(m \sin h^{-1} x)$, prove that: $(1+x^2) y_{n+2} + (2n+1)xy_{n+1} + (n^2+m^2)y_n = 0.$
 - (b) If $\theta = t^n e^{-\frac{r^2}{4r}}$ find the value of n for which $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$
 - (c) If $u = x\Phi\left(\frac{y}{x}\right) + \Psi\left(\frac{y}{x}\right)$ show that

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial x^{2}} = 0$$

(d) If $u = u \left(\frac{y-x}{xy}, \frac{z-x}{xz} \right)$ show that

$$x^{2} \frac{\partial u}{\partial x} + y^{2} \frac{\partial u}{\partial y} + z^{2} \frac{\partial u}{\partial z} = 0$$

(e) Expand e^x log(1+y) in the neighbourhood of the point (0, 0) up-to 3rd degree term.

TMA 101/5180

(f) If
$$x = u \cos \alpha - v \sin \alpha$$
, $y = u \sin \alpha + v \cos \alpha$, $prove$
that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2}$

3. Attempt any two questions:

$$[10 \times 2 = 20]$$

(a) If
$$u^3 + v^3 + w^3 = x + y + z$$
,
 $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and

$$\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 \text{ then find } \frac{\partial(u, v, w)}{\partial(x, y, z)}$$

- (b) In a plane triangle ABC, find the maximum value of cosA cosB cosC.
- In estimating the number of bricks in a pile which is measured to be $(5m\times10m\times5m)$ the count of bricks is taken as 100 bricks per m³. Find the error in the cost when the tape is stretched 2% beyond the standard length. The cost of bricks is Rs.2000 per thousand bricks.
- 4. Attempt any two questions: $[10 \times 2 = 20]$
 - (a) (i) Evaluate $\iint x^2 dx dy$, over the area outside $x^2 + y^2 ay = 0$ and inside $x^2 + y^2 2ay = 0$.

come (C.O) ap-to 31d accepted than

- Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx \text{ and hence evaluate the same.}$
 - (b) Establish the relation between Beta and Gamma functions and hence evaluate $\int_0^\infty \frac{x^4(1+x^5)}{(1+x)^{15}}$
 - (c) (i) Find the area outside the circle r = a and inside the cardioid $r = a(1 + \cos \theta)$.
 - (ii) Evaluate $\iiint \frac{dxdxdz}{(a^2-x^2-y^2-z^2)}$, for all positive values of the variables for which the expression is real.
- 5. Attempt any four questions: $[5 \times 4 = 20]$
 - (a) Find the value of a and b such that the surfaces $ax^2 byz = (a + 2)x$ and $4x^2y + z^3 = 4$ cut orthogonally at (1, -1, 2).
 - (b) Find the directional derivative of $\varphi = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the normal to the surface $x \log z y^2 = -4at(-1, 2, 1)$.
 - (c) Show that $\operatorname{div}(\operatorname{grad} r^n) = n(n+1)r^{n-2}$

- (d) Determine the constants a,b,c sQt $\vec{F} = (x + 2y + az) \hat{i} + (bx - 3y - z) \hat{j} + (4y)$ + 2z) \hat{k} is irrotational. Hence find the ir potential.
 - Establish the relation between Be-(e) Evaluate $\iint_{S} \vec{F} \cdot d\hat{s}$ where $\vec{F} = z\hat{i} + x\hat{j} - 3zy^{2}\hat{k}$ is the surface of the cylinder $x^2 + y^2 = 16$ incl in the first octant between z = 0 and z = 5.
- (f) Verify Stoke's theorem for the vector $\vec{F} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ over the upper surface of $x^2 + y^2 + z^2 = 1$ bounded by its proje daidy on xy plane. Southy synthog

185 <u>-2---</u> **X** 22-10

加加一年一年中国的政府的最大日本的民主教院的主义

the point (2, -1, 4) in modification of the remain

who was the in the discovery

Show that div(grad r' i = n(n+1))r" =