SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

TEC-101	163	Printed Pages: 4
Paper	Code & Roll No. to be filled in y	our Answer Book
Ro	II No.	
	Odd Semester Examinati	on-2016
B.Tech. (Semester-I)		
FUNDAMENTAL OF ELECTRONIC ENGINEERING		
Time: 3 Hou	ırs] [M	laximum Marks :100]
Note: Atten	pt all questions.	
1. Atter	pt any four questions:	[5×4=20]
(a)	Draw and explain V-I characteristics of p-n junction. Explain how Depletion layer develops in the diode.	
(b)	Define the following terms:	
	(i) Knee voltage	
	(ii) Peak inverse voltage	
	(iii) Leakage current	
(c)	Describe how p-type and nare produced. State the main them.	
TEC-101/290		[P.T.O.]

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- (d) Explain Diffusion capacitance and transition capacitance.
- (e) Explain Drift and Diffusion current.
- (f) At room temperature the reverse saturation current is 0.3μA when a reverse bias is applied to a germanium diode. Find the value of current flowing in a diode when 0.15V forward bias is applied.
- 2. Attempt any four questions:

 $[5 \times 4 = 20]$

- (a) The mobilities of free electrons and holes in a pure germanium are 0.38 and 0.18 m²/V-s. Find the value of intrinsic conductivity. Assume $n_i = 2.5 \times 10^{19}/m^3$ at room temperature.
- (b) Draw the circuit diagram of full wave rectifier using two diodes and explain its working showing input and output waveforms. Derive I_{dc}, I_{rms} and PIV for the same.
- (c) Differentiate between Zener and Avalanche breakdown mechanisms.
- (d) Explain various Clipper circuits.
- (e) Explain Voltage Multiplier with the help of circuit diagram.

TEC-101/290O

(2)

- (f) A half-wave rectifier is used to supply 12V dc to a resistive load R_L =500 Ω . If the forward resistance of the diode is 25 Ω , find the rms value of ac voltage supplied to the circuit.
- 3. Attempt any two questions:

 $[10 \times 2 = 20]$

- (a) Draw and explain the i/p & o/p characteristics of BJT in CE configuration, indicating the operating regions. Also explain why CE configuration is most widely used in amplifier circuits.
- (b) Explain the need of biasing. Discuss the potential divider biasing technique and derive its stability factor.
- (c) In a CE configuration the collector supply voltage Vcc=10V. When a resistor $R_C=1K\Omega$ is connected in the collector circuit the voltage drop across it is 0.5 V. If $\alpha=0.98$ determine Collector Emitter voltage and Base current.
- 4. Attempt any two questions:

 $[10 \times 2 = 20]$

(a) Explain the construction and working of the DE-MOSFET. Also explain the drain and transfer characteristics of DE-MOSFET.

TEC-101/2900

(3)

[P.T.O.]

SBG Study: Download Free Study Material WWW.SBGSTUDY.COM

- (b) Explain self biasing for n channel JFET. Also find the operating point Q.
- (c) A certain JFET has IDSS=12mA and Vp = -6V.

 Draw the transfer curve.
- 5. Attempt any two questions: $[10\times2=20]$
 - (a) Minimize the following using K Map $f(a, b, c, d) = \sum m(0, 1, 3, 4, 7, 9, 10, 14, 15)$
 - (b) Design AND, OR, NOR GATE USING NAND gate.
 - (c) (i) Derive the close loop voltage gain expression (A_f) of Inverting and Non Inverting Amplifier.
 - (ii) Draw the circuit diagram and explain Unity gain amplifier using op-amp.

---- x -----