

Object Oriented Programming & Methodology

Unit-3 Notes

Textbooks to study from:

 Herbert Schieldt, “The Complete Reference: Java”, TMH, 7th Edition.

 E. Balagurusamy, “Programming in JAVA”, TMH, 4th Edition.

Introduction

 Java Features
Java is a general purpose, object oriented programming language developed by Sun

Microsystems of USA in 1991. Java invertors wanted the language to be not only reliable,

portable and distributed but also simple, compact and interactive. java describes following

features:

 Java Environment

Fig 2.5 Process of building and running Java applications.

 How Java differs from C and C++

Fig: Overlapping of C, C++ and Java

 Java Tokens

Here we will describe the atomic elements of Java. Java programs are a collection of tokens,

comments and white spaces. There are five Java types of tokens: Keywords, identifiers, literals,

operators and separators. The operators are described in the next section.

Identifiers

Identifiers are used for class names, method names, and variable names. An identifier may

be any descriptive sequence of uppercase and lowercase letters, numbers, or the underscore

and dollar-sign characters. They must not begin with a number. Again, Java is case-sensitive, so

VALUE is a different identifier than Value.

Some examples of valid identifiers are:

AvgTemp count a4 this_is_ok

Invalid identifier names include these:

2count high-temp Not/ok

Literals

A constant value in Java is created by using a literal representation of it. For example, here

are some literals:

100 98.6 'X' "This is a test"

Left to right, the first literal specifies an integer, the next is a floating-point value, the third is

a character constant, and the last is a string.

Separators

In Java, there are a few characters that are used as separators. The most commonly used

separator in Java is the semicolon. The separators are shown in the following table:

Symbol Name Purpose

() Parentheses Used to contain lists of parameters in method definition and

 invocation. Also used for defining precedence in expressions,

 containing expressions in control statements, and surrounding cast

 types.

{ } Braces Used to contain the values of automatically initialized arrays. Also

 used to define a block of code, for classes, methods, and local

 scopes.

[] Brackets Used to declare array types. Also used when dereferencing array

 values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also

 used to chain statements together inside a for statement.

. Period Used to separate package names from subpackages and classes.

 Also used to separate a variable or method from a reference

 variable.

The Java Keywords

There are 50 keywords currently defined in the Java language (see Table 2-1). These keywords,

combined with the syntax of the operators and separators, form the foundation of the Java

language. These keywords cannot be used as names for a variable, class, or method.

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

NOTE:

you don't need to memorize all keywords for exam.

In addition to the keywords, Java reserves the following: true, false, and null. These are

values defined by Java. You may not use these words for the names of variables, classes,

and so on.

 Comments

Like most other programming languages, Java lets you enter a remark into

a program‟s source file. The contents of a comment are ignored by the compiler. Instead, a

comment describes or explains the operation of the program to anyone who is reading its

source code. In real applications, comments generally explain

how some part of the program works or what a specific feature does. There are three types of

comments defined by Java.

single-line comment:

// Your program begins with a call to main().

A single-line comment begins with a // and ends at the end of the line.

 multiline comment:

/*

This is a simple Java program.

Call this file "Example.java".

*/

This type of comment must begin with /* and end with */. Anything

between these two comment symbols is ignored by the compiler. As the name suggests, a

multiline comment may be several lines long.

documentation comment:

The documentation comment

begins with a /** and ends with a */. After the beginning /**, the first line or lines become the

main description of your class, variable,

or method.

/**

* This class draws a bar chart.

* @author Ramesh

* @version 3.2

*/

 System Class
System class is a class predefined by Java that is automatically included in your programs. Java

environment relies on several built-in class libraries that contain many built-in methods that

provide support for things as I/O, string handling, networking, and graphics. Two of Java‟s built-

in methods are println() and print().

 Control Statements
Java‟s program control statements can be put into the following categories: selection, iteration,

and jump. Selection statements allow your program to choose different paths of execution based

upon the outcome of an expression or the state of a variable. Iteration statements enable program

execution to repeat one or more statements (that is, iteration statements form loops). Jump

statements allow your program to execute in a nonlinear fashion. All of Java‟s control statements

are examined here.

Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control the

flow of your program‟s execution based upon conditions known only during run time.

Here is the general form of the if statement:

 if (condition) statement1;

 else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly

braces (that is, a block). The condition is any expression that returns a boolean value. The else

clause is optional.

Nested ifs

A nested if is an if statement that is the target of another if or else. When you nest ifs, the main

thing to remember is that an else statement always refers to the nearest if statement that is within

the same block as the else and that is not already associated with an else.

if(i == 10) {

 if(j < 20) a = b;

 if(k > 100) c = d; // this if is

 else a = c; // associated with this else

}

else a = d; // this else refers to if(i == 10)

The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the

if-else-if ladder. It looks like this:

 if(condition)

 statement;

 else if(condition)

 statement;

 else if(condition)

 statement;

 ...

 else

 statement;

The if statements are executed from the top down. As soon as one of the conditions controlling

the if is true, the statement associated with that if is executed, and the rest of the ladder is

bypassed. If none of the conditions is true, then the final else statement will be executed. The

final else acts as a default condition; that is, if all other conditional tests fail, then the last else

statement is performed. If there is no final else and all other conditions are false, then no action

will take place.

Example:

if(month == 12 || month == 1 || month == 2)

season = "Winter";

else if(month == 3 || month == 4 || month == 5)

season = "Spring";

else if(month == 6 || month == 7 || month == 8)

season = "Summer";

else if(month == 9 || month == 10 || month == 11)

season = "Autumn";

else

season = "Bogus Month";

switch

The switch statement is Java‟s multiway branch statement. It provides an easy way to dispatch

execution to different parts of your code based on the value of an expression. As such, it often

provides a better alternative than a large series of if-else-if statements. Here is the general form

of a switch statement:

switch (expression) {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default statement sequence

}

Example:

switch(i) {

case 0:

System.out.println("i is zero.");

break;

case 1:

System.out.println("i is one.");

break;

case 2:

System.out.println("i is two.");

break;

case 3:

System.out.println("i is three.");

break;

default:

System.out.println("i is greater than 3.");

The break statement is optional. If you omit the break, execution will continue on into the

next case. It is sometimes desirable to have multiple cases without break statements between

them. For example, consider the following program:

class MissingBreak {

public static void main(String args[]) {

for(int i=0; i<12; i++)

switch(i) {

case 0:

case 1:

case 2:

case 3:

case 4:

System.out.println("i is less than 5");

break;

case 5:

case 6:

case 7:

case 8:

case 9:

System.out.println("i is less than 10");

break;

default:

System.out.println("i is 10 or more");

}

}

}

Iteration Statements

Java‟s iteration statements are for, while, and do-while. These statements create what we

commonly call loops.

while

The while loop is Java‟s most fundamental loop statement. It repeats a statement or block

while its controlling expression is true. Here is its general form:

while(condition) {

// body of loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long

as the conditional expression is true. When condition becomes false, control passes to the

next line of code immediately following the loop.

Example:

class While {

public static void main(String args[]) {

int n = 10;

while(n > 0) {

System.out.println("tick " + n);

n--;

}

}

}

do-while

The do-while loop always executes its body at least once, because its conditional expression is at

the bottom of the loop. Its general form is

do {

// body of loop

} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the

conditional expression. If this expression is true, the loop will repeat. Otherwise, the loop

terminates. As with all of Java‟s loops, condition must be a Boolean expression.

Example:

class DoWhile {

public static void main(String args[]) {

int n = 10;

do {

System.out.println("tick " + n);

n--;

} while(n > 0);

}

}

for

there are two forms of the for loop in Java. The first is the traditional form that has been in use

since the original version of Java. The second is the new “for-each” form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

The for loop operates as follows. When the loop first starts, the initialization portion of the loop

is executed. This is an expression that sets the value of the loop control variable and the

initialization expression is only executed once. Next, condition is evaluated. This must be a

Boolean expression. It usually tests the loop control variable against a target value. If this

expression is true, then the body of the loop is executed. If it is false, the loop terminates.

Next, the iteration portion of the loop is executed. This is usually an expression that increments

or decrements the loop control variable.

Example:

class ForTick {

public static void main(String args[]) {

int n;

for(n=10; n>0; n--)

System.out.println("tick " + n);

}

}

The For-Each Version of the for Loop

Second form of for was defined that implements a “for-each” style loop. The for-each style of

for is also referred to as the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection)

statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will

receive the elements from a collection, one at a time, from beginning to end. With each iteration

of the loop, the next element in the collection is retrieved and stored in itr-var. The loop repeats

until all elements in the collection have been obtained.

To understand the motivation behind a for-each style loop, consider the type of for loop that it is

designed to replace.

The following fragment uses a traditional for loop to compute the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int i=0; i < 10; i++)

 sum += nums[i];

here is the preceding fragment rewritten using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;

for(int x: nums)

sum += x;

Operators

Java provides a rich operator environment. Most of its operators can be divided into the

following four groups: arithmetic, bitwise, relational, and logical.

 Arithmetic Operators

Operator Result

+ Addition

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

–= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use

them on boolean types, but you can use them on char types, since the char type in Java is,

essentially, a subset of int.

arithmetic using integers

int a = 1 + 1;

int b = a * 3;

int c = b / 4;

int d = c - a;

int e = -d;

int x = 42;

y= x % 10;

a = 2

b = 6

c = 1

d = -1

e = 1

y=2

arithmetic using doubles

double da = 1 + 1;

double db = da * 3;

double dc = db / 4;

double dd = dc - a;

double de = -dd;

int dx = 42;

dy= dx % 10;

da = 2.0

db = 6.0

dc = 1.5

dd = -0.5

de = 0.5

dy= 2.25

Arithmetic Compound Assignment Operators

Java provides special operators that can be used to combine an arithmetic operation with

an assignment.

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same

action: they increase the value of a by 4.

class OpEquals {

public static void main(String args[]) {

int a = 1;

int b = 2;

int c = 3;

a += 5;

b *= 4;

c += a * b;

c %= 6;

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

}

}

The output of this program is shown here:

a = 6

b = 8

c = 3

Increment and Decrement

The increment operator increases its operand by one. The decrement operator decreases

its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

is equivalent to

x--;

These operators are unique in that they can appear both in postfix form, where they

follow the operand as just shown, and prefix form, where they precede the operand.

is modified. For example:

x = 42;

y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is assigned

to y. Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;

y = x;

However, when written like this,

x = 42;

y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.

Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two

statements:

y = x;

x = x + 1;

 The Bitwise Operators

Java defines several bitwise operators that can be applied to the integer types, long, int, short,

char, and byte. These operators act upon the individual bits of their operands. They are

summarized in the following table:

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

The Bitwise Logical Operators

The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of

each operation. In the discussion that follows, keep in mind that the bitwise operators are

applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT

Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its

operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in all

other cases. Here is an example:

 00101010 (42)

& 00001111 (15)

--

 00001010 (10)

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then

the resultant bit is a 1, as shown here:

 00101010 (42)

| 00001111 (15)

 00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is 1.

Otherwise, the result is zero. The following example shows the effect of the ^.

Notice how the bit pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever

the second operand has a 0 bit, the first operand is unchanged.

 00101010 (42)

^ 00001111 (15)

 00100101 37

The Left Shift

The left shift operator, <<, shifts all of the bits in a value to the left a specified number of times.

It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the <<

moves all of the bits in the specified value to the left by the number of bit positions specified

by num.

a = 00 0100 0000 (64)

i = a << 2

i = 01 0000 0000 (256)

The Right Shift

The right shift operator, >>, shifts all of the bits in a value to the right a specified number of

times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>

moves all of the bits in the specified value to the right the number of bit positions specified

by num.

a = 00100011 (35)

i = a >> 2

i= 00001000 (8)

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled in

with the previous contents of the top bit. This is called sign extension and serves to preserve

the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which,

in binary, is

a = 11111000 (–8)

i = a >>1

i = 11111100 (–4)

The Unsigned Right Shift

As you have just seen, the >> operator automatically fills the high-order bit with its previous

contents each time a shift occurs. This preserves the sign of the value. However, sometimes

this is undesirable. When we shift a zero into the high-order bit no matter what its initial value

was. This is known as an unsigned shift. To accomplish this, you will use Java‟s unsigned, shift-

right operator, >>>, which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all

32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros,

ignoring normal sign extension. This sets a to 255.

int a = -1;

a = a >>> 24;

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

Bitwise Operator Compound Assignments

All of the binary bitwise operators have a compound form similar to that of the algebraic

operators, which combines the assignment with the bitwise operation.

int a = 1;

int b = 2;

int c = 3;

a |= 4;

b >>= 1;

c <<= 1;

a ^= c;

output:

a = 3

b = 1

c = 6

 Relational Operators

The relational operators determine the relationship that one operand has to the other.

Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. Only numeric types can be compared using

the ordering operators. That is, only integer, floating-point, and character operands may be

compared to see which is greater or less than the other.

For example,

int a = 4;

int b = 1;

boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.

If you are coming from a C/C++ background, please note the following. In C/C++, these

types of statements are very common:

int done;

// ...

if(!done) ... // Valid in C/C++

if(done) ... // but not in Java.

In Java, these statements must be written like this:

if(done == 0) ... // This is Java-style.

if(done != 0) ...

 Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the

binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way

that they operate on the bits of an integer.

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

Example:

boolean a = true;

boolean b = false;

boolean c = a | b;

boolean d = a & b;

boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

a = true

b = false

a|b = true

a&b = false

a^b = true

a&b|a&!b = true

!a = false

Short-Circuit Logical Operators

These are secondary versions of the Boolean AND and OR operators, and are known as

short-circuit logical operators. As you can see from the preceding table, the OR operator

results in true when A is true, no matter what B is. Similarly, the AND operator results in

false when A is false, no matter what B is. If you use the || and && forms, rather than the

| and & forms of these operators, Java will not bother to evaluate the right-hand operand

when the outcome of the expression can be determined by the left operand alone. This is

very useful when the right-hand operand depends on the value of the left one in order

to function properly.

Example:

We can take advantage of short-circuit logical evaluation to be sure that a division operation will

be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a divide by zero

error when denom is zero. If this line of code were written using the single & version

of AND, both sides would be evaluated, causing a divide by zero error when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving

Boolean logic, leaving the single-character versions exclusively for bitwise operations.

The Assignment Operator

The assignment operator is the single equal sign, =. The assignment operator works in

Java much as it does in any other computer language. It has this general form:

var = expression;

The assignment allows you to create a chain of assignments. For example, consider this

fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works

because the = is an operator that yields the value of the right-hand expression Thus, the

value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a

“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator

Java includes a special ternary (three-way) operator that can replace certain types of if-then-else

statements.

The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is

true, then expression2 is evaluated; otherwise, expression3 is evaluated.

Both expression2 and expression3 are required to return the same type, which can’t be void.

Here is an example of the way that the ? is employed:

demon =0,num=50;

ratio = denom == 0 ? 0 : num / denom;

ratio=0;

demon=10,num=50;

ratio = denom == 0 ? 0 : num / denom;

ratio = 5;

 Operator Precedence

The Precedence of the Java Operators

Highest

() [] .

++ – – ~ !

* / %

+ –

>> >>> <<

> >= < <=

== !=

&

^

|

&&

||

?:

= op=

Lowest

the first row shows items: parentheses, square brackets, and the dot operator. Parentheses are

used to alter the precedence of an operation, the square brackets provide array indexing, the dot

operator is used to dereference objects.

Data Types

As with all modern programming languages, Java supports several types of data. Data types

specify size and type of values that can be stored. Data types are divided into two groups:

 Primitive data types - includes byte, short, int, long, float, double, boolean and char

 Non-primitive data types - such as String, Arrays and Classes

 Primitive Data Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and

boolean. These can be put in four groups:

• Integers This group includes byte, short, int, and long, which are for whole-valued

signed numbers.

• Floating-point numbers This group includes float and double, which represent numbers with

fractional precision.

• Characters This group includes char, which represents symbols in a character set,

like letters and numbers.

• Boolean This group includes boolean, which is a special type for representing

true/false values.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive

and negative values. Java does not support unsigned, positive-only integers. The width and

ranges of these integer types vary widely, as shown in this table:

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Floating-Point Types

Floating-point numbers, also known as real numbers, are used when evaluating expressions

that require fractional precision. There are two kinds of floating-point types, float and double,

which represent single- and double-precision numbers, respectively. Their width and ranges are

shown here:

Name Width in Bits Approximate Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

Floating-point literals in Java default to double precision. To specify a float literal, you

must append an F or f to the constant. You can also explicitly specify a double literal by

appending a D or d. Doing so is, of course, redundant.

Characters

In Java, the data type used to store characters is char. Java char is a 16-bit type. The range of a

char is 0 to 65,536. The standard set of characters known as ASCII still ranges from 0 to 127 as

always, and the

extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. They are 16-bit values that can

be converted into integers and manipulated with the integer operators, such as the addition

and subtraction operators. A literal character is represented inside a pair of single quotes. All

of the visible ASCII characters can be directly entered inside the quotes, such as „a‟, „z‟, and

„@‟. There are several escape sequences that allow you to enter the character you need, such as

„\‟‟ for the single-quote character itself and ‘\n’ for the newline character.

Booleans

Java has a primitive type, called boolean, for logical values. It can have only one of two

possible values, true or false. This is the type returned by all relational operators, as in the

case of a < b. boolean is also the type required by the conditional expressions that govern

the control statements such as if and for. The values of true and false do not convert into any

numerical representation. The true literal in Java does not equal 1, nor does the false literal

equal 0.

Type Conversion and Casting

Type Conversion is to assign a value of one type to a variable of another type. If the two types

are compatible,

then Java will perform the conversion automatically. it is still possible to obtain a conversion

between

incompatible types. To do so, you must use a cast, which performs an explicit conversion

between incompatible types.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion

will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the

int type is always large enough to hold all valid byte values, so no explicit cast statement is

required.

For widening conversions, the numeric types, including integer and floating-point types,

are compatible with each other. However, there are no automatic conversions from the

numeric types to char or boolean. Also, char and boolean are not compatible with each other.

Casting Incompatible Types

if you want to assign an int value to a byte variable? This conversion will not

be performed automatically, because a byte is smaller than an int. This kind of conversion is

sometimes called a narrowing conversion, since you are explicitly making the value narrower

so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is

simply an explicit type conversion. It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to.

int a;

byte b;

// ...

b = (byte) a;

the fragment above casts an int to a byte.

A different type of conversion will occur when a floating-point value is assigned to an

integer type: truncation. For example, if the value 1.23 is assigned to an integer, the resulting

value will simply be 1. The 0.23 will have been truncated.

 Wrapper classes in Java
Java uses primitive types (also called simple types), such as int or double, to hold the basic data

types supported by the language. The wrapper class in Java provides the mechanism to convert

primitive into object and object into primitive. Despite the performance benefit offered by the

primitive types, there are times when you will need an object representation. For example, many

of the standard data structures implemented by Java operate on objects, which means that you

can‟t use these data structures to store primitive types. To handle these (and other) situations,

Java provides type wrappers, which are classes

that encapsulate a primitive type within an object. The type wrappers are Double, Float, Long,

Integer, Short, Byte, Character, and Boolean.

The following code snippet demonstrates how to use a numeric type wrapper to

encapsulate a value and then extract that value.

Integer iOb = new Integer(100); //boxing

int i = iOb.intValue(); //unboxing

This program wraps the integer value 100 inside an Integer object called iOb. The program

then obtains this value by calling intValue() and stores the result in i. The process of

encapsulating a value within an object is called boxing. The process of extracting a value from a

type wrapper is called unboxing.

Autoboxing

Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)

into its equivalent type wrapper whenever an object of that type is needed. There is no need

to explicitly construct an object

Integer iOb = 100; // autobox an int

Auto-unboxing is the process by which the value of a boxed

object is automatically extracted (unboxed) from a type wrapper when its value is needed.

int i = iOb; // auto-unbox;

 Non-Primitive Data Types

Arrays

An array is a group of contiguous or related data item that share a common name. A specific

element in an array is accessed by its index. Arrays offer a convenient means of grouping related

information.

For example, the following declares an array named month_days with the type “array of int”:

int month_days[];

This declaration establishes the fact that month_days is an array variable, but no array actually

exists. To link month_days with an actual, physical array of integers, you must allocate

one using new and assign it to month_days. new is a special operator that allocates memory.

This example allocates a 12-element array of integers and links them to month_days.

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all

elements in the array will be initialized to zero. Once you have allocated an array, you can access

a specific element in the array by specifying its index within square brackets.

month_days[1] = 28;

Arrays can also be initialized when they are declared. An array initializer is a list of comma-

separated expressions surrounded by curly braces.

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

String

The String type is used to declare string variables. You can also declare arrays of strings.

A quoted string constant can be assigned to a String variable

For example, consider the following fragment:

String str = "this is a test";

Here, str is an object of type String. It is assigned the string “this is a test”.

Variables
A variable is an identifier that denotes a storage location used to store a data value. A variable

may take different values at different times during the execution of program. Variable names

may consists of alphabets, digits, the underscore and dollar characters, subject to following

conditions.

 They must not begin with a digit.

 Uppercase and lowercase variables are distinct. This means that variable VALUE is

different from value.

 It should not be keyword.

 Whitespaces are not allowed.

 Variables name can be any length.

Declaration of Variables:

Variable declaration does three things.

 It tells compiler what the variable name is.

 It specifies what type data variable will hold.

 The path of declaration decides the scope of variable.

A variable must be declared before it is used in the program.

Here are several examples of variable declarations of various types. Note that some

include an initialization.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializing

 // d and f.

byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.

char x = 'x'; // the variable x has the value 'x'.

The Scope and Lifetime of Variables

In Java, the two major scopes are those defined by a class and those defined by a method.

The data, or variables, defined within a class are called instance variables. Variables defined

within a class are called instance variables because each instance of the class (that is, each object

of the class) contains its own copy of these variables. Thus, the data for one object is separate

and unique from the data for another.

 An instance variable must be accessed only through an object of its class.

However, it is possible to create a variable that can be used by itself, without reference to a

specific object. To create such a variable, we precede its declaration with the keyword static.

When a variable is declared static, it can be accessed before any objects of its class are created,

and without reference to any object.

Instance variables declared as static are, essentially, global variables. When objects of its class

are declared, no copy of a static variable is made. Instead, all instances of the class share the

same static variable.

The variables declared and used inside methods are called local variables. The scope defined by

a method begins with its opening curly brace. However, if that method has parameters, they too

are included within the method‟s scope. These variables are not available for use outside method

definition.

 Local variables can also be declared inside program blocks that are defined

between an opening brace"{" and closing brace "}". These variables are visible to program only

from beginning of its program block and the end of program block. The following code segment

show nested program block i.e. program block within program block.

The scope of variable in the above code snippet is nested. The outer scope encloses the inner

scope. This means that variables declared in the outer scope will be visible to code within the

inner scope. However, the reverse is not true. Variables declared within the inner scope will not

be visible outside it.

Methods & Classes
 Class Fundamentals
A class creates a logical framework that defines the relationship between its members. a class is

defined by specifying the data that it contains and the code that operates on that data. While very

simple classes may contain only code or only data, most real-world classes contain both.

A class is declared by use of the class keyword.

A simplified general form of a class definition is shown here:

class Box {

double width;

double height;

double depth;

// display volume of a box

void volume() {

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

The data, or variables, defined within a class are called instance variables. Variables defined

within a class are called instance variables because each instance of the class (that is, each object

of the class) contains its own copy of these variables. In the example above width, height and

depth are instance variables of class Box.

A class defines a new type of data. In this case, the new data type is called Box. Class name is

used to declare objects of type Box. It is important to remember that a class declaration only

creates a template; it does not create an actual object.

Methods are used to access the instance variables defined by the class. If the method does not

return a value, its return type must be void. Methods that have a return type other than void

return a value to the calling routine using the following form of the return statement:

return value;

Here, value is the value returned.

Declaring Objects

Obtaining objects of a class is a two-step process.

First, you must declare a variable of the class type. This variable does not define an object.

Instead, it is simply a variable that can refer to an object.

Second, you must acquire an actual, physical copy of the object and assign it to that variable.

You can do this using the new operator.

In the preceding class example, the following is used to declare an object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show

each step more clearly:

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. After this line executes,

mybox contains the value null, which indicates that it does not yet point to an actual object.

Any attempt to use mybox at this point will result in a compile-time error.

The next line allocates an actual object and assigns a reference to it to mybox.

Example of a class creating object of Box class described below:

class BoxDemo3 {

public static void main(String args[]) {

Box mybox1 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

// display volume of first box

mybox1.volume();

}

}

Assigning Object Reference Variables

Consider the following code segment:

Box b1 = new Box(); //statement 1

Box b2 = b1; //statement 2

In this code fragment, b1 and b2 will both refer to the same object created at statement 1. The

assignment of b1 to b2 did not allocate any memory or copy any part of the original object. It

simply makes b2 refer to the same object as does b1. Thus, any changes made to the object

through b2 will affect the object to which b1 is referring, since they are the same object. This

situation is depicted here:

b1

b2

Box object

 Static keyword
Static keyword is used to define a class member that will be used independently of any object of

that class. Normally, a class member must be accessed only through an object of its class.

However, it is possible to create a member that can be used by itself, without reference to a

specific instance. To create such a member, precede its declaration with the keyword static.

When a member is declared static, it can be accessed before any objects of its class are created,

and without reference to any object. Both methods and variables can be declared static. The

most common example of a static member is main(). main() is declared as static because it

must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of

its class are declared, no copy of a static variable is made. Instead, all instances of the class

share the same static variable.

Methods declared as static have several restrictions:

• They can only call other static methods.

• They must only access static data/variables.

The following example shows a class that has a static method and some static variables:

class UseStatic {

static int a = 3;

static int b = 4;

static void meth(int x)

{

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

public static void main(String args[]) {

meth(42);

}

}

output of the program is:

x=42

a=3

b=4

Outside of the class in which they are defined, static methods and variables can be used

independently of any object. To do so, you need only specify the name of their class followed

by the dot operator.

Here is an example. Inside main(), the static method callme() and the static variable b

are accessed through their class name StaticDemo.

class StaticDemo {

static int a = 42;

static int b = 99;

static void callme() {

System.out.println("a = " + a);

}}

class StaticByName {

public static void main(String args[])

{

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}

}

Here is the output of this program:

a = 42

b = 99

 Constructors
A constructor initializes an object immediately upon creation. It has the same name as the class

in which it resides and is syntactically similar to a method. Once defined, the constructor is

automatically called immediately when the object is created. Constructors have no return type,

not even void.

The following example define a simple constructor that simply sets the dimensions of each box

to the same values.

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box() {

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

}

}

When this program is run, it generates the following results:

Constructing Box

Volume is 1000.0

when creating an object of Box class:

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor for

a class, then Java creates a default constructor for the class. The default constructor automatically

initializes all instance variables to zero.

Parameterized Constructors

The following version of Box defines a parameterized constructor that sets the dimensions of a

box as specified by those parameters.

class Box {

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

double vol;

// get volume of box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

}

}

The output from this program is shown here:

Volume is 3000.0

As you can see, each object is initialized as specified in the parameters to its constructor.

For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.

 Overloading Methods
Method overloading is a way to define two or more methods within the same class that share the

same name, as long as the type and/or number of their parameters are different. Method

overloading is one of the ways that Java supports polymorphism.

When an overloaded method is called, Java uses the type and/or number of arguments to

determine which version of the overloaded method to actually call.

While overloaded methods may have different return types, the return type alone is insufficient

to distinguish two versions of a method.

Here is a simple example that illustrates method overloading:

class OverloadDemo {

void test() {

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a) {

System.out.println("a: " + a);

}

// Overload test for two integer parameters.

void test(int a, int b) {

System.out.println("a and b: " + a + " " + b);

}

// overload test for a double parameter

double test(double a) {

System.out.println("double a: " + a);

System.out.println("Result of ob.test:" + (a*a));

}

}

class Overload {

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

ob.test(10, 20);

ob.test(123.25);

System.out.println("Result of ob.test(123.25): " + result);

}

}

This program generates the following output:

No parameters

a: 10

a and b: 10 20

double a: 123.25

Result of ob.test:15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,

the second takes one integer parameter, the third takes two integer parameters, and the

fourth takes one double parameter.

 Overloading Constructors
Like method overloading, we can also overload constructors. Example of overloaded constructor

is described below:

class Box {

double width;

double height;

double depth;

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len) {

width = height = depth = len;

}

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class OverloadCons

{

public static void main(String args[])

{

// create boxes using the various constructors

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

// get volume of cube

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

}

}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

The proper overloaded constructor is called based upon the parameters specified when new is

executed.

 The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword. this can be used inside any method to refer to the current object. That is, this

is always a reference to the object on which the method was invoked.

Instance Variable Hiding

When a local variable has the same name as an instance variable, the local variable hides the

instance variable. Because this lets you refer directly to the object, you can use it to resolve any

name space collisions that might occur between instance variables and local variables.

For example, here is a version of Box(), which uses width, height, and depth for parameter

names and then uses this to access the instance variables by the same name:

class Box {

double width;

double height;

double depth;

// Use this to resolve name-space collisions.

Box(double width, double height, double depth) {

this.width = width;

this.height = height;

this.depth = depth;

}

}

Invoking Overloaded Constructors Through this()

When working with overloaded constructors, it is sometimes useful for one constructor to invoke

another. In Java, this is accomplished by using another form of the this keyword. When this() is

executed, the overloaded constructor that matches the parameter list specified by argumentst is

executed first. Then, if there are any statements inside the original constructor, they are executed.

The call to this() must be the first statement within the constructor.

To understand how this() can be used, let‟s work through a short example.

class MyClass {

int a;

int b;

// initialize a and b individually

MyClass(int i, int j) {

a = i;

b = j;

}

// initialize a and b to the same value

MyClass(int i) {

this(i, i); // invokes MyClass(i, i)

}

// give a and b default values of 0

MyClass() {

this(0); // invokes MyClass(0)

}

}

In this version of MyClass, the only constructor that actually assigns values to the a and b fields

is MyClass(int, int). The other two constructors simply invoke that constructor (either directly

or indirectly) through this().

For example, consider what happens when this statement executes:

MyClass mc = new MyClass(8);

The call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to

MyClass(8, 8), because this is the version of the MyClass constructor whose parameter list

matches the arguments passed via this().

Now, consider the following statement, which uses the default constructor:

MyClass mc2 = new MyClass();

In this case, this(0) is called. This causes MyClass(0) to be invoked because it is the constructor

with the matching parameter list. Of course, MyClass(0) then calls MyClass(0, 0) as just

described.

One reason why invoking overloaded constructors through this() can be useful is that it can

prevent the unnecessary duplication of code.

 Inheritance

Inheritance is the process by which one object acquires the properties of another object. It

supports the concept of hierarchical classification. For example, a Golden Retriever is part of the

classification dog, which in turn is part of the mammal class, which is under the larger class

animal. y use of inheritance, an object need only define those qualities that make it unique within

its class. It can inherit its general attributes from its parent.

Using inheritance, you can create a general class that defines traits common to a set of related

items. This class can then be inherited by other, more specific classes, each adding those things

that are unique to it. In Java, a class that is inherited is called a superclass. The class that does

the inheriting is called a subclass. Therefore, a subclass is a specialized version of a superclass. It

inherits all of the instance variables and methods defined by the superclass and adds its own,

unique elements.

Inheritance may take different forms:

 Single Inheritance (only one super class)

 Multilevel Inheritance (Derived from a derived class)

 Hierarchical Inheritance(one super class, many sub-classes)

 Multiple Inheritance(several super classes)

fig: Forms of Inheritance

Single Inheritance

To inherit a class, you simply incorporate the definition of one class into another by using the

extends keyword.

Following example describe single inheritance:

class Animal{

void eat()

{System.out.println("eating...");

}

}

class Dog extends Animal

{

void bark()

{

System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Dog d=new Dog();

d.bark();

d.eat();

}}

Member Access and Inheritance

Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private. For example, consider the

following simple class hierarchy:

// Create a superclass.

class A {

int i; // default

private int j; // private to A

void setij(int x, int y) {

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A {

int total;

void sum() {

total = i + j; // ERROR, j is not accessible here

}

}

class Access {

public static void main(String args[]) {

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}

}

This program will not compile because the reference to j inside the sum() method of B

causes an access violation. Since j is declared as private, it is only accessible by other members

of its own class. Subclasses have no access to it.

A Superclass Variable Can Reference a Subclass Object

Areference variable of a superclass can be assigned a reference to any subclass derived from

that superclass. You will find this aspect of inheritance quite useful in a variety of situations.

For example, consider the following:

class Animal{

void eat()

{System.out.println("eating...");

}

}

class Dog extends Animal

{

void bark()

{

System.out.println("barking...");}

}

class TestInheritance{

public static void main(String args[]){

Animal a = new Animal();

a.eat();

Dog d=new Dog();

d.bark();

d.eat();

Animal ad = new Dog();

ad.eat();

}}

Here, a is a reference to Animal objects, and b is a reference to Dog objects.

Since Dog is a subclass of Animal, it is permissible to assign Dog object to ad, a reference

variable of Animal class. It is important to understand that it is the type of the reference variable

that determines what members can be accessed. That is, when a reference to a subclass object is

assigned to a superclass reference variable, you will have access only to those parts of the object

defined by the superclass.

Multilevel Inheritance
Simple class hierarchies consist of only a superclass and a subclass. However, you can build

hierarchies that contain as many layers of inheritance as you like. As mentioned, it is perfectly

acceptable to use a subclass as a superclass of another.

For example, given three classes called A, B, and C, C can be a subclass of B, which is a

subclass of A. When this type of situation occurs, each subclass inherits all of the traits found in

all of its superclasses. In this case, C inherits all aspects of B and A. Let us describe an example

below:

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class BabyDog extends Dog{

void weep(){System.out.println("weeping...");}

}

class TestInheritance2{

public static void main(String args[]){

BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

}}

When Constructors Are Called

When a class hierarchy is created, in what order are the constructors for the classes that make up

the hierarchy called? The answer is that in a class hierarchy, constructors are called in order of

derivation, from superclass to subclass. Further, since super() must be the first statement

executed in a subclass‟ constructor, this order is the same whether or not super() is used. If

super() is not used, then the default or parameterless constructor of each superclass will be

executed.

Example:

// Create a super class.

class A {

A() {

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A {

B() {

System.out.println("Inside B's constructor.");

}

}

// Create another subclass by extending B.

class C extends B {

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons {

public static void main(String args[]) {

C c = new C();

}

}

The output from this program is shown here:

Inside A‟s constructor

Inside B‟s constructor

Inside C‟s constructor

As you can see, the constructors are called in order of derivation.

Hierarchical Inheritance

Many programming problems can be cast into hierarchy where certain features of one level are

shared by many other below the level. This is known as Hierarchical Inheritance.

Example:

class Animal{

void eat(){System.out.println("eating...");}

}

class Dog extends Animal{

void bark(){System.out.println("barking...");}

}

class Cat extends Animal{

void meow(){System.out.println("meowing...");}

}

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

Dog d=new Dog();

d.bark();

d.eat();

}}

 Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as a

method in its superclass, then the method in the subclass is said to override the method in the

superclass. When an overridden method is called from within a subclass, it will always refer to

the version of that method defined by the subclass. The version of the method defined by the

superclass will be hidden.

Consider the following:

// Method overriding.

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

// display i and j

void show() {

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

// display k – this overrides show() in A

void show() {

System.out.println("k: " + k);

}

}

class Override {

public static void main(String args[]) {

B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined within B

is used. That is, the version of show() inside B overrides the version declared in A.

Overridden methods allow Java to support run-time polymorphism. Polymorphism is essential to

object-oriented programming for one reason: it allows a general class to specify methods that

will be common to all of its derivatives, while allowing subclasses to define the specific

implementation of some or all of those methods.

 The super keyword
Whenever a subclass needs to refer to its immediate superclass, it can do so by use of the

keyword super.

super has two general forms. The first calls the superclass‟ constructor. The second is used to

access a member of the superclass that has been hidden by a member of a subclass.

Each use is examined here.

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following form of super:

Let‟s review the key concepts behind super(). When a subclass calls super(), it is calling the

constructor of its immediate superclass. Thus, super() always refers to the superclass

immediately above the calling class. This is true even in a multileveled hierarchy.

Also, super() must always be the first statement executed inside a subclass constructor.

class Box {

private double width;

private double height;

private double depth;

// constructor used when all dimensions specified

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxWeight extends Box

{

double weight; // weight of box

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m)

{

super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor

BoxWeight() {

super();

weight = -1;

}

}

class DemoSuper {

public static void main(String args[])

{

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(); // default

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

}

}

A Second Use for super

The second form of super acts somewhat like this, except that it always refers to the superclass

of the subclass in which it is used. This usage has the following general form:

 super.member

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of a subclass

hide members by the same name in the superclass.

// Using super to overcome name hiding.

class A {

int i;

}

// Create a subclass by extending class A.

class B extends A {

int i; // this i hides the i in A

B(int a, int b) {

super.i = a; // i in A

i = b; // i in B

}

void show() {

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}

}

class UseSuper {

public static void main(String args[]) {

B subOb = new B(1, 2);

subOb.show();

}

}

This program displays the following:

i in superclass: 1

i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i defined

in the superclass.

super can also be used to call methods that are hidden by a subclass. If you wish to access the

superclass version of an overridden method, you can do so by using super.

Example:

class A {

int i, j;

A(int a, int b) {

i = a;

j = b;

}

class B extends A {

int k;

B(int a, int b, int c) {

super(a, b);

k = c;

}

void show() {

super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

i and j: 1 2

k: 3

Here, super.show() calls the superclass version of show().

 The final keyword
The keyword final has three uses.

 It can be used to create the equivalent of a named constant.

 Using final to Prevent Overriding.

 Using final to Prevent Inheritance.

final variables

A variable can be declared as final. Doing so prevents its contents from being modified. This

means that you must initialize a final variable when it is declared.

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

It is a common coding convention to choose all uppercase identifiers for final variables.

Variables declared as final do not occupy memory on a per-instance basis. Thus, a final variable

is essentially a constant.

Using final to Prevent Overriding

To disallow a method from being overridden, specify final as a modifier at the start of its

declaration. Methods declared as final cannot be overridden.

The following fragment illustrates final:

class A {

final void meth() {

System.out.println("This is a final method.");

}

}

class B extends A {

void meth() { // ERROR! Can't override.

System.out.println("Illegal!");

}

}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do so, a

compile-time error will result.

Using final to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede the class

declaration with final. Declaring a class as final implicitly declares all of its methods as final,

too.

Here is an example of a final class:

final class A {

// ...

}

// The following class is illegal.

class B extends A { // ERROR! Can't subclass A

// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

 Abstract Classes
Sometimes you will want to create a superclass that only defines a generalized form that will be

shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a class

determines the nature of the methods that the subclasses must implement. To accomplish this it is

required that certain methods be overridden by subclasses by specifying the abstract type

modifier. These methods have no implementation specified in the superclass. Thus, a subclass

must override them.

Any class that contains one or more abstract methods must also be declared abstract. To declare

a class abstract, you simply use the abstract keyword in front of the class keyword at the

beginning of the class declaration.

There can be no objects of an abstract class. That is, an abstract class cannot be directly

instantiated with the new operator. Such objects would be useless, because an abstract class is

not fully defined.

Any subclass of an abstract class must either implement all of the abstract methods in the

superclass, or be itself declared abstract.

abstract class A {

abstract void callme();

// concrete methods are still allowed in abstract classes

void callmetoo() {

System.out.println("This is a concrete method.");

}

}

class B extends A {

void callme() {

System.out.println("B's implementation of callme.");

}

}

class AbstractDemo {

public static void main(String args[]) {

B b = new B();

b.callme();

b.callmetoo();

}

}

Notice that no objects of class A are declared in the program. As mentioned, it is not possible to

instantiate an abstract class.

One other point: class A implements a concrete method called callmetoo(). This is perfectly

acceptable.

Although abstract classes cannot be used to instantiate objects, they can be used to create object

references, because Java‟s approach to run-time polymorphism is implemented through the use

of superclass references. Thus, it must be possible to create a reference to an abstract class so

that it can be used to point to a subclass object.

