

If the radius of the earth be increased by a factor of 5, by what factor its density be changed to keep the value of g the same?

(A) 1/25 (B) 1/5 (C)  $1/\sqrt{5}$  (D) 5

The mass and diameter of a planet are twice those of earth. What will be the period of oscillation of a pendulum on this planet if it is a seconds pendulum on earth?

(A)  $\sqrt{2}$  second (B)  $2\sqrt{2}$  seconds (C)  $\frac{1}{\sqrt{2}}$  second (D)  $\frac{1}{2\sqrt{2}}$  second (E)  $\frac{1$ 

| 7.  | Two identical satellites are at the heights R and 7R from the Earth's surface. Then which of the                     |                                     |                     |                                    |
|-----|----------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------|------------------------------------|
|     | following statement is incorrect. (R = radius of the Earth)                                                          |                                     |                     |                                    |
| 10  | (A) Ratio of total energy of both is 5                                                                               |                                     |                     |                                    |
|     | (B) Ratio of kinetic energy of both is 4                                                                             |                                     |                     |                                    |
|     | (C) Ratio of potential energy of both 4                                                                              |                                     |                     |                                    |
|     | (D) Ratio of total energy of both is 4 and ratio of magnitude of potential to kinetic energy is 2                    |                                     |                     |                                    |
| 8.  | A spherical uniform planet is rotating about its axis. The velocity of a point on its equator is V. Due              |                                     |                     |                                    |
|     | to the rotation of planet about its axis the acceleration due to gravity g at equator is 1/2 of g at poles.          |                                     |                     |                                    |
|     | The escape velocity of a particle on the pole of planet in terms of V is                                             |                                     |                     |                                    |
|     | $(A) V_e = 2V$                                                                                                       | (B) $V_e = V$                       | (C) $V_e = V/2$     | (D) $V_e = \sqrt{3} V$             |
| 9.  | The escape velocity for a planet is v <sub>e</sub> . A tunnel is dug along a diameter of the planet and a small body |                                     |                     |                                    |
|     | is dropped into it at the surface. When the body reaches the centre of the planet, its speed will be                 |                                     |                     |                                    |
|     |                                                                                                                      |                                     |                     |                                    |
|     | $(A) v_e$                                                                                                            | (B) $\frac{v_{\epsilon}}{\sqrt{2}}$ | (C) $\frac{v_e}{2}$ | (D) 0                              |
|     | and so the n                                                                                                         |                                     |                     |                                    |
| 10. | A (nonrotating) star collapses onto itself from an initial radius R <sub>i</sub> with its mass remaining unchanged.  |                                     |                     |                                    |
|     | Which curve in figure best gives the gravitational acceleration ag on the surface of the star as a                   |                                     |                     |                                    |
|     | function of the radius of the star during the collapse?                                                              |                                     |                     |                                    |
|     |                                                                                                                      | a <sub>g</sub> ↑                    |                     | of (c) inside the direct provincia |
|     |                                                                                                                      | na is toro reside the shi           | Lion good by A      |                                    |
|     | mential at the centre                                                                                                | on langitatives of F an             | 3                   |                                    |
|     |                                                                                                                      | Secretary Sec.                      |                     | A CAMBRIDA IN A RULE WHITH THE     |
|     |                                                                                                                      |                                     | $R_i \rightarrow R$ |                                    |
|     | (A) a                                                                                                                | (B) h                               | (C)                 | (D) 1                              |

11. A satellite of mass m, initially at rest on the earth, is launched into a circular orbit at a height equal to the radius of the earth. The minimum energy required is

(A)  $\frac{\sqrt{3}}{4}$  mgR (B)  $\frac{1}{2}$  mgR (C)  $\frac{1}{4}$  mgR (D)  $\frac{3}{4}$  mgR

12. The figure shows the variation of energy with the orbit radius of a body in circular planetary motion. Find the correct statement about the curves A, B and C



(A) A shows the kinetic energy, B the total energy and C the potential energy of the system.

(B) C shows the total energy, B the kinetic energy and A the potential energy of the system.

(C) C and A are kinetic and potential energies respectively and B is the total energy of the system.

(D) A and B are kinetic and potential energies and C is the total energy of the system.

