SINGLE CORRECT TYPE QUESTIONS G STUDY nal emf.

Faraday's law & motional emf.

A square of side 2 meters lies in the x-y plane in a region, where the magnetic field is given by $\vec{B} = B_0 (2\hat{i} + 3\hat{j} + 4\hat{k})T$, where B_0 is constant. The magnitude of flux passing through the square is:

- (A) $8B_{o}$ Wb. (B) $12B_{o}$ Wb. (C) $16B_{o}$ Wb. (D) $\sqrt{4 \times 29}B_{0}$ Wb.

Statement-1: When a magnet is made to fall freely through a closed coil, its acceleration is always less than acceleration due to gravity.

Statement-2: Current induced in the coil opposes the motion of the magnet, as per Lenz's law.

- (A) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is true, Statement-2 is true, Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- In the given figure the centre of a small conducting circular loop B lies on the axis of bigger circular loop A and their axis are mutually perpendicular. An anticlockwise (when viewed from the side of B) current in the loop A start increasing then:-

- (A) current induced in the loop B is in clockwise direction (when viewed from above the B)
- (B) current induced in the loop B is in anti-clockwise direction (when viewed from above the B)
- (C) current must induced in the loop B but its direction can not be predicted
- (D) no current is induced in the loop B
- A vertical bar magnet is dropped from position on the axis of a fixed metallic coil as shown in fig I. In fig.II the magnet is fixed and horizontal coil is dropped. The acceleration of the magnet and coil are a, and a, respectively then:-

 $(A) a_1 > g, a_2 > g$

(B) $a_1 > g$, $a_2 < g$

 $(C) a_1 < g, a_2 < g$ (D) $a_1 < g, a_2 > g$

Two identical coaxial circular loops carry a current i each circulating in the same direction. If the loops approach each other

- (A) the current in each will decrease
- (B) the current in each will increase
- (C) the current in each will remain the same
- (D) the current in one will increase and in other will decrease

(C)
$$\frac{3B\omega L^2}{4}$$

The e.m.f. induced in a coil of wire, which is rotating in a magnetic field, does not depend on

- (A) the angular speed of rotation
- (B) the area of the coil
- (C) the number of turns on the coil
- (D) the resistance of the coil

Induced electric field

A ring of resistance 10Ω, radius 10cm and 100 turns is rotated at a rate 100 revolutions per second about its diameter is perpendicular to a uniform magnetic field of induction 10mT. The amplitude of the current in the loop will be nearly (Take : $\pi^2 = 10$)

(A) 200A

(B) 2A

(C) 0.002A

(D) none of these

A uniform but time varying magnetic field is present in a circular region 21. of radius R. The magnetic field is perpendicular and into the plane of the loop and the magnitude of field is increasing at a constant rate α . There is a straight conducting rod of length 2R placed as shown in figure. The magnitude of induced emf across the rod is

(A) $\pi R^2 \alpha$

(B) $\frac{\pi R^2 \alpha}{2}$ (C) $\frac{R^2 \alpha}{\sqrt{2}}$

 $(D) \frac{\pi R^2 \alpha}{4}$

Figure shows a uniform magnetic field B confined to a cylindrical volume and is increasing at a constant rate. The instantaneous acceleration experienced by an electron placed at P is

(A) zero

(B) towards right

(C) towards left

(D) upwards

- Statement-1: For a charged particle moving from point P to point Q the net work done by an 23. induced electric field on the particle is independent of the path connecting point P to point Q. Statement-2: The net work done by a conservative force on an object moving along closed loop is zero.
 - (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
 - (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
 - (C) Statement-1 is true, statement-2 is false.
 - (D) Statement-1 is false, statement-2 is true.

Inductance

In an L-R circuit connected to a battery of constant e.m.f. E switch S is closed at time t = 0. If e denotes the magnitude of induced e.m.f. across inductor and i the current in the circuit at any time t. Then which of the following graphs shows the variation of e with i?

A current of 2A is increasing at a rate of 4 A/s through a coil of inductance 2H. The energy stored in the inductor per unit time is :-

(A) 2 J/s

- (B) 1 J/s
- (C) 16 J/s
- (D) 4 J/s
- Two identical inductance carry currents that vary with time according to linear laws (as shown in 26. figure). In which of two inductance is the self induction emf greater?

(A) 1

(Q) same

- (B) 2
- (D) data are insufficient to decide
- The current in the given circuit is increasing with a rate a = 4 amp/s. The charge on the capacitor at an instant when the current in the circuit is 2 amp will be:

(A) 4μ C (B) 5μ C

- (C) 6µC (D) none of these
- A long solenoid of N turns has a self inductance L and area of cross section A. When a current i flows through the solenoid, the magnetic field inside it has magnitude B. The current i is equal to:
 - (A) BAN/L
- (B) BANL
- (C) BN/AL
- (D) B/ANL

- A coil of inductance 5H is joined to a cell of emf 6V through a resistance 10Ω at time t = 0. The emf 38. across the coil at time $t = ln \sqrt{2}$ s is:
 - (A) 3V

- (B) 1.5 V
- (C) 0.75 V
- (D) 4.5 V

- 39. For L-R circuit, the time constant is equal to
 - (A) twice the ratio of the energy stored in the magnetic field to the rate of dissipation of energy in the resistance
 - (B) ratio of the energy stored in the magnetic field to the rate of dissipation of energy in the resistance
 - (C) half the ratio of the energy stored in the magnetic field to the rate of dissipation of energy in the resistance
 - (D) square of the ratio of the energy stored in the magnetic field to the rate of dissipation of energy in the resistance
- In the adjoining circuit, initially the switch S is open. The switch 'S' is closed at t = 0. The difference between the maximum and minimum current that can flow in the circuit is

(A) 2 Amp

(B) 3 Amp

(D) nothing can be concluded (C) 1 Amp

(A) 1:1

(B) 3:2

(C)2:3

(D) 1:3

In the circuit shown, X is joined to Y for a long time, and then X is joined to Z. The total heat 42. produced in R₂ is:

$$(A) \frac{LE^2}{2R_1^2}$$

(D)
$$\frac{LE^2R_2}{2R_1^2}$$

43.	3. In a L-R decay circuit, the initial current at t = 0 is I. The total charge that has flown thro resistor till the energy in the inductor has reduced to one—fourth its initial value, is				
	(A) LI/R	(B) LI/2R	(C) $LI\sqrt{2}/R$	(D) None	
44.		alue of capacitor in µF in	n L-C circuit.	e of 16 V and maximum energy (D) 2	
45.		(B) 4	(C) 3		
43.	A condenser of capacity 6 µF is fully charged using a 6-volt battery. The battery is removed and a resistanceless 0.2 mH inductor is connected across the condenser. The current which is flowing through the inductor when one-third of the total energy is in the magnetic field of the inductor is:				
	(A) 0.1 A	(B) 0.2 A	(C) 0.4 A	(D) 0.6 A	
46.	In an LC circuit the c	capacitor has maximum	charge q ₀ . The value of	$\left(\frac{\mathrm{dI}}{\mathrm{dt}}\right)_{\mathrm{max}}$ is:-	
	carear la coince con la	L_000000	C Londe (mono)	(47) i= 2.	
		and seld? However out in	fally the special 8 il ope	The state of the s	
	90	q ₀	qo	$\int_{0}^{\infty} \int_{\mathbb{R}^{2} + \gamma}^{\infty}$	
	(A) $\frac{q_0}{LC}$	(B) $\frac{q_0}{\sqrt{LC}}$	(C) $\frac{q_0}{2LC}$	(D) $\frac{2q_0}{LC}$	
Alte	rnating current			to not s	
47. When 100 V DC is applied across a solenoid a current of 1 A flows in it. When 100 V AC is applied					
	across the same coil, the current drops to 0.5 A. If the frequency of the AC source is 50 Hz, the impedance and inductance of the solenoid are:				
	(A) 100Ω, 0.93 H	(B) 200Ω, 1.0 H	(C) 10Ω , $0.86H$	(D) 200Ω , 0.55 H	
48. If I ₁ , I ₂ , I ₃ and I ₄ are the respective r.m.s. values of the time varying currents as shown in the focases I, II, III and IV. Then identify the correct relations.					
/				(D) $I_3 > I_2 > I_1 > I_4$	
The power factor of the circuit is $1/\sqrt{2}$. The capacitance of the circuit is equal to					
/			in (100 t)		

0.1 H

(C) 500 μF

(D) 200 µF

10Ω

(B) 300 μF

 $(A) 400 \mu F$

