| 10. | If the three points with position vectors (1, a, b); (a, 2, b) and (a, b, 3) are collinear in space, the the value of a + b is | | | | | |--------|---|---|---|--|--| | | (A) 3 | (B) 4 | (C) 5 | (D) none | | | 11. | Consider the f | following 3 lines in space | of its internal angle at A is | | | | | | $+2\hat{\mathbf{k}} + \lambda(2\hat{\mathbf{i}} + 4\hat{\mathbf{j}} - \hat{\mathbf{k}})$ | | | | | | | $-3\hat{\mathbf{k}} + \mu(4\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ | | | | | 12. | Then which or | le between the medians | (C) only L_3L_1 drawn from the acute ang | (D) L_1L_2 and L_2L_3 les of an isosceles right angled (D) none | | | | (A) $\cos^{-1}(2/3)$ | (B) $\cos^{-1}(3/4)$ | (C) $\cos^{-1}(4/5)$ | 11000 | | | 13. | The vectors 3i | $-2\hat{j} + \hat{k}, \hat{i} - 3\hat{j} + 5\hat{k} & 2$ | | of a triangle. Then triangle is | | | 14. | (A) an acute an (C) an equilater If the vectors 3 | | (B) an obtuse angle (D) a right angled to \overline{q} ; $4\overline{p} - 2\overline{q}$ are pairs of | | | | | then $\sin(\overline{p}^{\overline{q}})$ | is (D) (55/8 | (C) 3/16 | (D) $\sqrt{247}/16$ | | | 15. | (A) $\sqrt{55/4}$ (B) $\sqrt{55/8}$ Consider the points A, B and C with position vectors $(-2\hat{i}+3\hat{j}+5\hat{k})$, $(\hat{i}+2\hat{j}+3\hat{k})$ and $7\hat{i}-\hat{k}$ respectively. | | | | | | | Statement-1: Th | e vector sum, $\overrightarrow{AB} + \overrightarrow{BC}$ | $+\overrightarrow{CA} = \overrightarrow{0}$ | (C) form a scalene mangl | | | siecha | (A) Statement-1(B) Statement-1statement-1.(C) Statement-1 | B and C form the vertice is true, statement-2 is true is true, statement-2 is true is true, statement-2 is fals | s of a triangle. e and statement-2 is corre ue and statement-2 is NO se. | ct explanation for statement-1 OT the correct explanation for | | | | (D) Statement-1 | is false, statement-2 is tru | hetween the vectors cxi- | $-6\hat{j} + 3\hat{k} & x\hat{i} - 2\hat{j} + 2cx\hat{k}$ | | | | acute for every x | of c for which the angle $\in \mathbb{R}$ is (B) $[0, 4/3]$ | | (D) [0, 4/3) | | | 7. I | (A) $(0, 4/3)$
Let $\vec{u} = \hat{i} + \hat{j}$, $\vec{v} = $
then $ \vec{w} \cdot \hat{n} $ is equ | $\hat{i} - \hat{j}$ and $\vec{w} = \hat{i} + 2\hat{j} + 3\hat{k}$ | | uch that $\vec{\mathbf{u}} \cdot \hat{\mathbf{n}} = 0$ and $\vec{\mathbf{v}} \cdot \hat{\mathbf{n}} = 0$ | | | | A) 1 | (B) 2 | (C) 3 | (D) 0 | | If the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ is decomposed into vectors parallel and perpendicular to the vector | 25. | If a vector \vec{a} of magnitude 50 is collinear with vector $\vec{b} = 6\hat{i} - 8\hat{j} - \frac{13}{2}k$ and makes an acute angle | |-----|--| | | with positive z-axis then: | | | (A) $\vec{a} = 4\vec{b}$ (B) $\vec{a} = -4\vec{b}$ (C) $\vec{b} = 4\vec{a}$ (D) none | | 26. | de la completa del completa de la completa del completa de la del la completa de del la completa de la completa del | | | $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$. Then for the triangle ABC, D is its | | | (A) incentre (B) circumcentre (C) orthocentre (D) centroid | | 27. | \vec{a} and \vec{b} are unit vectors inclined to each other at an angle α , $\alpha \in (0, \pi)$ and $ \vec{a} + \vec{b} < 1$. Then $\alpha \in$ | | | (A) $\left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$ (B) $\left(\frac{2\pi}{3}, \pi\right)$ (C) $\left(0, \frac{\pi}{3}\right)$ (D) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ | | 28. | Image of the point P with position vector $7\hat{i} - \hat{j} + 2\hat{k}$ in the line whose vector equation is, | | | $\vec{r} = 9\hat{i} + 5\hat{j} + 5\hat{k} + \lambda(\hat{i} + 3\hat{j} + 5\hat{k})$ has the position vector | | | (A) $(-9,5,2)$ (B) $(9,5,-2)$ (C) $(9,-5,-2)$ (D) none | | 29. | Let \hat{a} , \hat{b} , \hat{c} are three unit vectors such that $\hat{a} + \hat{b} + \hat{c}$ is also a unit vector. If pairwise angles between \hat{a} , \hat{b} , \hat{c} are θ_1 , θ_2 and θ_3 respectively then $\cos \theta_1 + \cos \theta_2 + \cos \theta_3$ equals | | | (A) 3 (B) -3 (C) 1 (D) -1 | | 30. | at a point $A(x, y)$ where $x = 2$. The tangent cuts the | | | x-axis at point B. Then the scalar product of the vectors AB & OB is (A) 3 (B) -3 (C) 6 (D) -6 | | 31. | Cosine of an angle between the vectors $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ if $ \vec{a} = 2$, $ \vec{b} = 1$ and $\vec{a} \wedge \vec{b} = 60^{\circ}$ is | | | (A) $\sqrt{3/7}$ (B) $9/\sqrt{21}$ (C) $3/\sqrt{7}$ (D) none | | 32. | An arc AC of a circle subtends a right angle at the centre O. The point B divides the arc in the ratio | | | 1:2. If $\overrightarrow{OA} = \overrightarrow{a} & \overrightarrow{OB} = \overrightarrow{b}$, then the vector \overrightarrow{OC} in terms of $\overrightarrow{a} & \overrightarrow{b}$, is $\overrightarrow{OB} = \overrightarrow{b} \overrightarrow{b}$ | | | (A) $\sqrt{3}\vec{a} - 2\vec{b}$ (B) $-\sqrt{3}\vec{a} + 2\vec{b}$ (C) $2\vec{a} - \sqrt{3}\vec{b}$ (D) $-2\vec{a} + \sqrt{3}\vec{b}$ | | 33. | The state of s | | 33. | with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with \vec{a} & $ \vec{a} = \vec{b} = \vec{c} = \sqrt{2}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{c}$ | | | | | | $\vec{c} \cdot \vec{a}$: (A) is 3 (B) is -3 (C) is 0 (D) cannot be evaluated | | A. | and the state of t | | | The vector equations of two lines L_1 and L_2 are respectively $\vec{r} = 17\hat{i} - 9\hat{j} + 9\hat{k} + \lambda(3\hat{i} + \hat{j} + 5\hat{k})$ and $\vec{r} = 15\hat{i} - 8\hat{j} - \hat{k} + \mu(4\hat{i} + 3\hat{j})$ | | | $\Gamma = 1/1 + 9j + 9k + k(31 + j + 9k) \text{ and } 1 - 191 \text{ of } k + \mu(41 + 9j)$ | | | I L_1 and L_2 are skew lines | | 1. | | | | III $(-11, 11, 1)$ is the point of intersection of L_1 and L_2 | | K | $(3/\sqrt{35})$ is the acute angle between L_1 and L_2 | | 1 | then, which of the following is true? | | 1 | (A) II and IV (B) I and IV (C) IV only (D) III and IV |