Arithmetic mean, weighted mean, Combined mean

- 1. Mean of the first n terms of the A.P. $a, (a + d), (a + 2d), \dots is$

 - (1) $a + \frac{nd}{2}$ (2) $a + \frac{(n-1)d}{2}$
 - (3) a + (n-1) d
- (4) a + nd
- 2. The A.M. of first n even natural number is -
 - (1) n(n+1) (2) $\frac{n+1}{2}$ (3) $\frac{n}{2}$ (4) n+1
- The A.M. of ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{n}$ is -3.
- (1) $\frac{2^n}{n}$ (2) $\frac{2^{n+1}}{n}$ (3) $\frac{2^n}{n+1}$ (4) $\frac{2^{n+1}}{n+1}$
- If the mean of numbers 27, 31, 89, 107, 156 is 82, then the mean of numbers 130, 126, 68, 50, 1 will be-
 - (1)80
- (2)82
- (3)75
- (4) 157

If the mean of n observations x_1, x_2, \dots, x_n is \bar{x} , then the sum of deviations of observations from mean is :-

(1)0

The mean of 9 terms is 15. if one new term is added and mean become 16, then the value of new term is :-

- (1)23
- -(2)25
- (3)27
- (4)30

If the mean of first n natural numbers is equal

- to $\frac{n+7}{3}$, then n is equal to-
- (1) 10

(2)11

(3)12

- (4) none of these
- The mean of first three terms is 14 and mean of next two terms is 18. The mean of all the five terms is-

9.

- (1) 15.5 (2) 15.0 (3) 15.2 (4) 15.6
- If the mean of five observations x, x + 2, x + 4, x + 6 and x + 8 is 11, then the mean of last three obsevations is-
 - (1)11
- (2) 13
- (3)15
- (4)17

- The mean of a set of numbers is \bar{x} . If each 10. number is decreased by λ , the mean of the new set is-
 - $(1) \overline{x}$
- (2) $\overline{x} + \lambda$ (3) $\lambda \overline{x}$ (4) $\overline{x} \lambda$
- The mean of 50 observations is 36. If its two 11. observations 30 and 42 are deleted, then the mean of the remaining observations is-
 - (1)48

(2)36

(3)38

(4) none of these

In a frequency dist., if dis deviation of variates

from a number ℓ and mean = $\ell + \frac{\sum f_i d_i}{\sum f_i}$, then ℓ

- (1) Lower limit
- (2) Assumed mean
- (3) Number of observation
- (4) Class interval
- The A.M. of n observation is \bar{x} . If the sum of 13. n = 4 observations is K, then the mean of remaining observations is-

 - $(1) \frac{\overline{x} K}{4} \qquad (2) \frac{n\overline{x} K}{n}$

 - $(3) \frac{n\overline{x} K}{4} \qquad (4) \frac{n\overline{x} (n-4)K}{4}$
- The mean of values $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$ which have 14. frequencies 1, 2, 3, n resp., is:-
 - (1) $\frac{2n+1}{3}$ (2) $\frac{2}{n}$ (3) $\frac{n+1}{2}$ (4) $\frac{2}{n+1}$

- The sum of squares of deviation of variates 15. from their A.M. is always:-
 - (1) Zero
 - (2) Minimum
 - (3) Maximum
 - (4) Nothing can be said
- 16. If the mean of following feq. dist. is 2.6, then the value of f is :-

x _i	1	2	3	4	5
fi	5	4	f	2	3

(1) 1

(2)3

(3)8

(4) None of these