
1.	Consider the hype	erbola $9x^2 - 16y^2 + 72x - 1$	32y - 16 = 0. Find the	e following:			
	(a) centre	(b) eccentricity	(c) focii	(d) equation of directrix			
	(e) length of the la	atus rectum	(f) equation of a	auxilary circle			
	(g) equation of dir	rector circle					
2.	The area of the qu	adrilateral with its vertices	at the foci of the conic	cs (d)			
	Social	$9x^2 - 16y^2 - 18x +$					
		$25x^2 + 9y^2 - 50x -$	In the Park of the Control of the con-	502			
	(A) 5/6	(B) 8/9	(C) 5/3	(D) 16/9			
3/	Eccentricity of the	e hyperbola conjugate to the	hyperbola $\frac{x^2}{x^2} - \frac{y^2}{x^2}$	= 1 is			
	annas am to mayora-	to to the latest to to so so so so	4 12				
	2			4			
	$(A) \frac{2}{\sqrt{3}}$	(B) 2	(C) $\sqrt{3}$	(D) $\frac{4}{3}$			
1	Sunday 19 x 1f a ci	nels mits a sectangular hyp	52 - 1 52 t -	$0.8 - \sqrt{3} + v + tv = 4.\sqrt{3} = 0$ (where			
9.	The locus of the point of intersection of the lines $\sqrt{3}x - y - 4\sqrt{3}t = 0 & \sqrt{3}tx + ty - 4\sqrt{3}t = 0$ (where t is a parameter) is a hyperbola whose eccentricity is						
	t is a parameter) is	a hyperbola whose eccenti	icity is				
	(A) $\sqrt{3}$	(B) 2	(C) $\frac{2}{\sqrt{3}}$	(D) $\frac{4}{3}$			
	(11) 1/3	et the equation of the 'Ny	$\sqrt{3}$	ctaniquiar asigmptutes as axes be			
5.	If the eccentricity	of the hyperbola $x^2 - y^2$ s	$\sec^2 \alpha = 5$ is $\sqrt{3}$ time	es the eccentricity of the ellipse			
	$x^2 \sec^2 \alpha + y^2 = 25$, then a value of α is:						
	(A) π/6	(B) π/4	(C) π/3	(D) π/2			
		, 2 , 2	x ² x ²	(6)			
5.	The foci of the ellip	ose $\frac{x}{16} + \frac{y}{b^2} = 1$ and the hyp	perbola $\frac{x}{144} - \frac{y}{81} = \frac{1}{2}$	$\frac{1}{25}$ coincide. Then the value of b^2			
		7y2+24xy-24ax-6ay	0	1: 0 43			
	is-	(B) 7 68 = 84 - 452 (W	(C) 0	(D) 4			
	(A) 5	the hyperbola $x^2 - 3y^2 - 4$	x - 6y - 11 = 0 is-	(D) 4			
•	(A) 4	(B) 6	(C) 8	(D) 10			
.,		Character from Subtantia Part Affect (1) For	CHITA CHESTING What will be	(D) 10			
/	The equation $\frac{x}{20-n}$	$+\frac{y}{4-p}=1 \ (p \neq 4, 29) \text{ rep}$	resents -	STUDY			
	(A) on allinge if n is	any constant greater than 4	SBG	191001			
			AT ESPECIAL PROPERTY.				
-	2000 C 44/4 L av 4	is any constant between 4		Market and the			
		perbola if p is any constant	greater than 29.	WI F ALL MAN AND AND AND AND AND AND AND AND AND A			
	(D) no real curve is p	is less than 29.	The same of the sa				

	$\frac{a^2}{a^2} - \frac{b^2}{b^2} = 1$ is equal	to (where e is the eccentri	city of the hyperbola)	offine and hyportro			
	(A) be	(B) e	(C) ab	(D) ae			
10.	The number of possible tangents which can be drawn to the curve $4x^2 - 9y^2 = 36$, which are perpendicular to the straight line $5x + 2y - 10 = 0$ is:						
	(A) zero	(B) 1	(C) 2	(D) 4			
11.	Locus of the point of intersection of the tangents at the points with eccentric angles ϕ and $\frac{\pi}{2} - \phi$ on						
	the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is:						
	(A) $x = a$	(B) $y = b$	(C) $x = ab$	(D) $y = ab$			
12.	If $\frac{x^2}{\cos^2 \alpha} - \frac{y^2}{\sin^2 \alpha} = 1$ represents family of hyperbolas where '\alpha' varies then -						
	(A) distance between the foci is constant						
	(B) distance between the two directrices is constant						
	(C) distance between the vertices is constant						
	(D) distances between focus and the corresponding directrix is constant						
13.	Number of common tangent with finite slope to the curves $xy = c^2 \& y^2 = 4ax$ is:						
	(A) 0	(B) 1	(C) 2				
14.	P is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, N is the foot of the perpendicular from P on the transverse axis. The targent to the hyperbola at P meets the transverse axis at T. If O is the centre of the						
	hyperbola, then OT.ON is equal to:						
	$(A) e^2$	(B) a ²	(C) b ²	$(D)b^2/a^2$			
15.	Locus of the feet of the perpendiculars drawn from either foci on a variable tangent to the hyperbola $16y^2 - 9x^2 = 1$ is						
	(A) $x^2 + y^2 = 9$	(B) $x^2 + y^2 = 1/9$	(C) $x^2 + y^2 = 7/144$	(D) $x^2 + y^2 = 1/16$			
16.	PQ is a double ordinate of the ellipse $x^2 + 9y^2 = 9$, the normal at P meets the diameter through Q at R, then the locus of the mid point of PR is						
	(A) a circle	(B) a parabola	(C) an ellipse	(D) a hyperbola			
7.	With one focus of the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$ as the centre, a circle is drawn which is tangent to the						
	hyperbola with no part of the circle being outside the hyperbola. The radius of the circle is						
	(A) less than 2	(B) 2	(C) $\frac{11}{3}$	(D) none			

The magnitude of the gradient of the tangent at an extremity of latera recta of the hyperbola

9.

	At the point of intersection of the rectangular hyperbola $xy = c^2$ and the parabola $y^2 = 4ax$ tangents			
28.	At the point of intersection of the rectangular hyperbola $xy = c$ and the parabola y			
	to the rectangular hyperbola and the parabola make an angle θ and ϕ respectively with the axis of X,			
	then.			

(A)
$$\theta = \tan^{-1}(-2 \tan \phi)$$

(B)
$$\phi = \tan^{-1}(-2 \tan \theta)$$

(C)
$$\theta = \frac{1}{2} \tan^{-1}(-\tan\phi)$$

(D)
$$\phi = \frac{1}{2} \tan^{-1}(-\tan\theta)$$

Locus of the middle points of the parallel chords with gradient m of the rectangular hyperbola 29. $xy = c^2$ is

$$(A) y + mx = 0$$

(B)
$$y - mx = 0$$

(C)
$$my - x = 0$$

(D)
$$my + x = 0$$

The locus of the foot of the perpendicular from the centre of the hyperbola $xy = c^2$ on a variable 30. tangent is:

(A)
$$(x^2 - y^2)^2 = 4c^2 xy$$

(B)
$$(x^2 + y^2)^2 = 2c^2 xy$$

(C)
$$(x^2 + y^2) = 4c^2 xy$$

(D)
$$(x^2 + y^2)^2 = 4c^2 xy$$

The equation to the chord joining two points (x_1, y_1) and (x_2, y_2) on the rectangular hyperbola 31. $xy = c^2$ is:

(A)
$$\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$$

(B)
$$\frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$$

(C)
$$\frac{x}{y_1 + y_2} + \frac{y}{x_1 + x_2} = 1$$
.

(D)
$$\frac{x}{y_1 - y_2} + \frac{y}{x_1 - x_2} = 1$$

A tangent to the ellipse $\frac{x^2}{Q} + \frac{y^2}{A} = 1$ with centre C meets its director circle at P and Q. Then the product of the slopes of CP and CQ, is -

(A)
$$\frac{9}{4}$$

(B)
$$\frac{-4}{9}$$

(C)
$$\frac{2}{9}$$

(C)
$$\frac{2}{9}$$
 (D) $-\frac{1}{4}$

The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Then the equation of the 33. hyperbola with eccentricity 2 is

(A)
$$\frac{x^2}{12} - \frac{y^2}{4} = 1$$

(B)
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

(C)
$$3x^2 - y^2 + 12 = 0$$

(D)
$$9x^2 - 25y^2 - 225 = 0$$

The graph of the equation $x + y = x^3 + y^3$ is the union of -

- (A) line and an ellipse
- (B) line and a parabola (C) line and hyperbola
- (D) line and a point