

Equation of the common tangent to the ellipses, $\frac{x^2}{a^2+b^2} + \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2+b^2} + \frac{y^2}{a^2+b^2} = 1$ is -

(B) by = $ax - \sqrt{a^4 + a^2b^2 + b^4}$

(D) by = $ax + \sqrt{a^4 - a^2b^2 + b^4}$

(A) $ay = bx + \sqrt{a^4 - a^2b^2 + b^4}$

(C) $ay = bx - \sqrt{a^4 + a^2b^2 + b^4}$

11.

(A) e' is independent of e

(B) e' = 1

(C) e' = e

(D) e' = 1/e

The area of the rectangle formed by the perpendiculars from the centre of the standard ellipse to the 18. tangent and normal at its point whose eccentric angle is $\pi/4$, is:

(A) $\frac{\left(a^2 - b^2\right)ab}{a^2 + b^2}$ (B) $\frac{\left(a^2 - b^2\right)}{\left(a^2 + b^2\right)ab}$ (C) $\frac{\left(a^2 - b^2\right)}{ab\left(a^2 + b^2\right)}$ (D) $\frac{a^2 + b^2}{\left(a^2 - b^2\right)ab}$

If P is any point on ellipse with foci $S_1 \& S_2$ and eccentricity is $\frac{1}{2}$ such that 19.

 $\angle PS_1S_2 = \alpha$, $\angle PS_2S_1 = \beta$, $\angle S_1PS_2 = \gamma$, then $\cot \frac{\alpha}{2}$, $\cot \frac{\gamma}{2}$, $\cot \frac{\beta}{2}$ are in

(A) A.P.

(B) G.P.

(C) H.P.

(D) NOT A.P., G.P. & H.P.