3.	The value of the constant 'm' and 'c' for which $y = mx + c$ is a solution of the differential equation $D^2y - 3Dy - 4y = -4x$.	
4.	(A) is $m = -1$; $c = 3/4$ (B) is $m = 1$; $c = -3/4$ (C) no such real m, c (D) is $m = 1$; $c = 3/4$ Consider the two statements	
	Statement-1: $y = \sin kt$ satisfies the differential equation $y'' + 9y = 0$. Statement-2: $y = e^{kt}$ satisfy the differential equation $y'' + y' - 6y = 0$ The value of k for which both the statements are correct is	
	(A) -3 (B) 0 (C) 2 (D) 3	
5.	If $y = \frac{x}{\ln cx }$ (where c is an arbitrary constant) is the general solution of the differential equation	1
	$\frac{dy}{dx} = \frac{y}{x} + \phi \left(\frac{x}{y}\right) \text{ then the function } \phi \left(\frac{x}{y}\right) \text{ is: } \mathbf{SBG} \mathbf{STUDY}$	
	(A) $\frac{x^2}{y^2}$ (B) $-\frac{x^2}{y^2}$ (C) $\frac{y^2}{x^2}$ (D) $-\frac{y^2}{x^2}$	
6.	The differential equation corresponding to the family of curves $y = e^x (ax + b)$ is	
	(A) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - y = 0$ (B) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$ (C) $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$ (D) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - y = 0$	0
7.	Water is drained from a vertical cylindrical tank by opening a valve at the base of the tank. It is known that the rate at which the water level drops is proportional to the square root of water depth y , where the constant of proportionality $k > 0$ depends on the acceleration due to gravity and the geometry of the holds.	he
	If t is measured in minutes and $k = \frac{1}{15}$ then the time to drain the tank if the water is 4 meter deep to st	ar
	with is	
	(A) 30 min (B) 45 min (C) 60 min (D) 80 min	
8.	The general solution of the differential equation $\frac{dy}{dx} = \frac{1-x}{y}$ is a family of curves which looks most	lik
	which of the following?	
	(A) // (B) (C) (D)	
		-

Number of values of $m \in N$ for which $y = e^{mx}$ is a solution of the differential equation

(C)3

(D) more than 2

 $D^3y - 3D^2y - 4Dy + 12y = 0$, is

(B) 1

(B) 2

Number of straight lines which satisfy the differential equation $\frac{dy}{dx} + x \left(\frac{dy}{dx}\right)$

1.

3.

(A)0

(A) 1

