1.	If $z + z^3 = 0$ then which	$z + z^3 = 0$ then which of the following must be true on the complex plane?		
	$(A) \operatorname{Re}(z) < 0$	(B) $Re(z) = 0$	$(C) \operatorname{Im}(z) = 0$	(D) $z^4 = 1$
2.	Number of integral values of n for which the quantity $(n + i)^4$ where $i^2 = -1$, is an integer is			
	(A) 1	(B) 2	(C) 3	(D) 4
3.	Let $i = \sqrt{-1}$. The product of the real part of the roots of $z^2 - z = 5 - 5i$ is			
	(A) – 25	(B) - 6	(C) - 5	(D) 25
4.	There is only one w $5x^4 + 4x^3 + 3x^2 + Mx +$ these unique values, th	N is divided by the polyr	abers M and N such the nomial $x^2 + 1$, the remaind	er is 0. If M and N assume
	(A) - 6	(B) - 2	(C) 6	
5.	(A) -6 (B) -2 (C) 6 (D) 2 The complex number z satisfying $z + z = 1 + 7i$ then the value of $ z ^2$ equals			
	(A) 625	(B) 169	(C) 49	(D) 25 4=7
6.	Number of values of z (real or complex) simultaneously satisfying the system of equations $1 + z + z^2 + z^3 + \dots + z^{17} = 0$ and $1 + z + z^2 + z^3 + \dots + z^{13} = 0$ is			
	(A) 1	(B) 2	(C) 3	(D) 4
7.	If $\frac{x-3}{3+i} + \frac{y-3}{3-i} = i$ where $x, y \in \mathbb{R}$ then			
	(A) $x = 2 & y = -\delta$	(B) $x = -2 & y = 8$	(C) $x = -2 & y = -6$	(D) $x = 2 & y = 8$
8.	Number of complex numbers z satisfying $z^3 = \overline{z}$ is $(2a^{i}y)^3 = (2a^{i}y)^3 = ($			
	(A) 1	(B) 2	(C) 4	(D) 5

(A)
$$\sqrt{5}$$

(D) $\sqrt{15}$

- If $i = \sqrt{-1}$, then $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is equal to
 - (A) $1 i\sqrt{3}$
- (B) $-1 + i\sqrt{3}$
- (C) i√3

- (D) $-i\sqrt{3}$
- Let C₁ and C₂ are concentric circles of radius 1 and 8/3 respectively having centre at (3,0) on the argand 31. plane. If the complex number z satisfies the inequality, $\log_{1/3} \left(\frac{|z-3|^2 + 2}{11|z-3|-2} \right) > 1$ then:
 - (A) z lies outside C₁ but inside C₂
- (B) z lies inside of both C₁ and C₂
- (C) z lies outside both of C, and C,
- (D) none of these
- 32. Identify the incorrect statement.
 - (A) no non zero complex number z satisfies the equation, $\bar{z} = -4z$
 - (B) $\bar{z} = z$ implies that z is purely real
 - (C) $\bar{z} = -z$ implies that z is purely imaginary
 - (D) if z_1 , z_2 are the roots of the quadratic equation $az^2 + bz + c = 0$ such that Im $(z_1 z_2) \neq 0$ then a, b, c must be real numbers.
- The equation of the radical axis of the two circles represented by the equations, 33.
 - |z-2|=3 and |z-2-3i|=4 on the complex plane is:
 - (A) 3y + 1 = 0 (B) 3y 1 = 0
- (C) 2y 1 = 0
- (D) none
- 34. $z_1 = \frac{a}{1-i}$; $z_2 = \frac{b}{2+i}$; $z_3 = a bi$ for $a, b \in \mathbb{R}$ if $z_1 - z_2 = 1$ then the centroid of the triangle formed by the points z_1 , z_2 , z_3 in the argand's plane is given
 - (A) $\frac{1}{9}(1+7i)$ (B) $\frac{1}{3}(1+7i)$ (C) $\frac{1}{3}(1-3i)$ (D) $\frac{1}{9}(1-3i)$
- Consider the equation $10z^2 3iz k = 0$, where z is a complex variable and $i^2 = -1$. Which of the 35. following statements is True?
 - (A) For all real positive numbers k, both roots are pure imaginary.
 - (B) For negative real numbers k, both roots are pure imaginary.
 - (C) For all pure imaginary numbers k, both roots are real and irrational.
 - (D) For all complex numbers k, neither root is real.
- Number of complex numbers z such that |z| = 1 and $\left| \frac{z}{\overline{z}} + \frac{z}{\overline{z}} \right| = 1$ is 36.
 - (A)4

- (B) 6

- (D) more than 8
- If z is a complex number satisfying the equation $|z (1 + i)|^2 = 2$ and $\omega = \frac{2}{z}$, then the locus traced by 37. 'ω' in the complex plane is
 - (A) x y 1 = 0
- (B) x + y 1 = 0
- (C) x y + 1 = 0
- (D) x + y + 1 = 0

