1. 2.	If the function $f(x) = 2x^2$ (A) $(-\infty, 4)$ (c) $f(x) = x + 1/x, x \neq 0$ is more	B) (4, ∞)	(C) $(-\infty, 8]$	s in the interval (D) $(8, \infty)$
0		B) $ x > 1$	(C) $ x < 2$	(D) $ x > 2$
3.	The function x* decreases	on the interval-		
	(A) (0, e)	(B) (0, 1)	$(C)\left(0,\frac{1}{e}\right)$	(D) None of these
1.	Function $f(x) = x^2(x-2)^2$	is-	tanx is increasing in	
	(A) increasing in (0, 1)	(2, ∞)	(B) decreasing in (0, 1	$)\cup(2,\infty)$
	(C) decreasing function		(D) increasing function	Historian 12: Proven
5.	If f and g are two decreas	ing function such that	fog is defined, then fog w	vill be-
	(A) increasing function		(B) decreasing function	
A	(C) neither increasing no	r decreasing	(D) None of these	zi (z) \
6.	If function $f(x) = 2x^2 + 3x^2$	x-mlogx is monotonic	decreasing in the interva	1(0, 1), then the least value
	of the parameter m is-			
_	(A) 7	(B) $\frac{15}{2}$	(C) $\frac{31}{4}$	(D) 8
7.	If $f(x) = x^3 - 10x^2 + 200x$	x - 10, then $f(x)$ is-	ODC C	YOUT
	(A) decreasing in $(-\infty, 1)$	0] and increasing in (10	,2BG	51001
	(B) increasing in $(-\infty, 10)$	o] and decreasing in (10	$(0,\infty)$	
	(C) increasing for every			
8	(A) f is not differentiable (C) f is even	ving statements does not e at $x = 0$	(B) f is monotonic (D) f has an extremum	12 - 17 Investment
9	Number of critical poin	ts of the function, $f(x) =$	$= \frac{2}{3}\sqrt{x^3} - \frac{x}{2} + \int_{1}^{x} \left(\frac{1}{2} + \frac{1}{2}\right)^{x}$	$\cos 2t - \sqrt{t}$ dt
1	which lie in the interval (A) 2	(B) 4		(D) 8
	10. The value of K in order	that $f(x) = \sin x - \cos x$	- Kx + b decreases for al	l real values is given by-
	(A) K < 1	(B) K ≥ 1	(C) $K \ge \sqrt{2}$	(D) K < $\sqrt{2}$

11.	When $0 \le x \le 1$, $f(x) =$	= x + x - 1 is-	(31-1)				
1	(A) increasing	(B) decreasing	(C) constant	(D) None of these			
12.	Let f(x) and g(x) be	two continuous function	ns defined from $R \to R$, such that $f(x_1) > f(x_2)$ and			
	$g(x_1) < g(x_2)$, $\forall x_1 > x_2$, then solution set of $f(g(\alpha^2 - 2\alpha)) > f(g(3\alpha - 4))$ is						
	(A) R	(B) ¢	(C) (1, 4)	(D) $R - [1, 4]$			
13.	If $2a + 3b + 6c = 0$, th	en at least one root of the	equation $ax^2 + bx + c =$	0 lies in the interval-			
1	(A) (0, 1)	(B) (1, 2)	(C)(2,3)	(D) none			
14.	If the equation $a_n x^n$	If the equation $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x = 0$ has a positive root $x = \alpha$, then the equation					
	$na_n x^{n-1} + (n-1) a_{n-1} x$	$a_1 = 0$ has a pos	sitive root, which is-	Statement 2 : The fu			
	(A) Smaller than α		(B) Greater than α	Unctions in any inte			
	(C) Equal to α		(D) Greater than or e	The second secon			
15.	Landing Town Town Street Street	A value of C for which the conclusion of Mean values theorem holds for the function $f(x) = \log_e x$					
Jim	on the interval [1, 3]	-21 Space a jon of C themself	e : Statement 2 is true: S	(D) Statement 1 istin			
	(A) 2log ₃ e	(B) $\frac{1}{2}\log_e 3$	(C) log ₃ e	(D) $\log_e 3$			
	Give the constraint in a	Carried Total Park					
6	in fading to X of X smiths in	101 (x) = (x) 1 (x)	x cos	$\left(\frac{1}{x}\right)$, $x \neq 0$ in the interval $x = 0$			
16.	The value of c in Lag	grange's theorem for the	function $f(x) = \begin{cases} 0 & \text{if } x > 0 \end{cases}$	(x) in the interval $y=0$			
VIII.	one a session Con will w)		a for which the function	to (exalter to see The Africa)			
	[-1, 1] is-						
	(A) 0		(B) $\frac{1}{2}$				
	Action to the leavest to		Create Centre	esitemo 2 + 21 + 25 = (2) t norman ant 11.			
	$(C) -\frac{1}{2}$		(D) Non existent in t	(D) Non existent in the interval			
-	LATE LATER TO			2 /2 · 1			
17.	If the function $f(x) = x^2$	$3-6x^2+ax+b$ defined or	n [1, 3], satisfies the roll	e's theorem for $c = \frac{2\sqrt{3} + 1}{\sqrt{3}}$,			
)		CT CHOICE TYPES		No			
	then- (A) $a = 11, b = 6$	(B) $a = -11$, $b = 6$	(C) $a = 11, b \in R$	(D) None of these			
	(A) a - 11, b - 0	A STATE OF THE STA					
	(1	2/3	$\int \frac{\tan[x]}{x}$, x	≠0			
18.	Given: $f(x) = 4 - \left(\frac{1}{2}\right)^{-1}$	-x	$g(x) = \begin{cases} \frac{\tan [x]}{x}, x \\ 1, x = \end{cases}$	The minder of 1000			
	198 (2) E (1)	and a long to		2 + (6)			
	$h(x) = \{x\}$		$k(x) = 5^{\log_2(x+3)}$	B 200 'R + R ' 200 d			
	then in [0, 1], Lagrange		(D) -1 1				
	(A) f, g, h	(B) h, k	(C) f, g	(D) g, h, k			
where [x] and $\{x\}$ denotes the greatest integer and fractional part function. 19. The function $f:[a,\infty) \to R$ where R denotes the range corresponding to the given domain, v							
19.				the given domain, with rule			
	$f(x) = 2x^3 - 3x^2 + 6$, will have an inverse provided						
	$(A) a \ge 1$	(B) $a \ge 0$	(C) $a \le 0$	(D) $a \le 1$			

.

 (A) increasing in its domain (B) decreasing in its domain (C) decreasing in (-∞, 0) and increasing in (0, ∞) (D) increasing in (-∞, 0) and decreasing in (0, ∞) 21. Given f'(1) = 1 and d/dx (f(2x)) = f'(x) ∀ x > 0. If f'(x) is differentiable then there exists a number c ∈ (2, 4) such that f" (c) equals (A) – 1/4 (B) – 1/8 (C) 1/4 (D) 1/8 22. Statement 1: The function x²(e² + e²²) is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e² and x²e² are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is false. (C) Statement 1 is true; Statement 2 is true; Statement 2 is a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is not 2 is not 2 is not 3 i	20.	The function $f(x) = \tan^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is	OFFI OCTANI - xi+ xi						
 (C) decreasing in (-∞, 0) and increasing in (0, ∞) (D) increasing in (-∞, 0) and decreasing in (0, ∞) 21. Given f'(1) = 1 and d/dx (f(2x)) = f'(x) ∀ x > 0. If f'(x) is differentiable then there exists a number c∈ (2, 4) such that f" (c) equals (A) - 1/4 (B) - 1/8 (C) 1/4 (D) 1/8 22. Statement 1: The function x²(e² + e²x) is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e² and x²e² are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1 if f(x₀) = g (x₀) and f' (x) > g' (x) for all x > x₀. (B) f(x) = g (x) for some x > x₀. (C) f(x) > g (x) for some x > x₀. (D) f(x) > g (x) for some x > x₀. (C) f(x) > g (x) only for some x > x₀. (D) f(x) > g (x) for all x > x₀. 24. The set of value(s) of 'a' for which the function f(x) = ax²/3 + (a + 2)x² + (a - 1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 (D) 0 26. EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 37. The equation sin x + x cos x = 0 has at least one root in (A) (-x) - x + x + x + x + x + x + x + x + x + x		(A) increasing in its domain	(B) decreasing in it	s domain					
 21. Given f'(1) = 1 and d/dx (f(2x)) = f'(x) ∀x > 0. If f'(x) is differentiable then there exists a number c ∈ (2, 4) such that f" (c) equals (A) - 1/4 (B) - 1/8 (C) 1/4 (D) 1/8 22. Statement 1: The function x²e² + e²x² is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e² and x²e² are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not		(C) decreasing in $(-\infty, 0)$ and increasing	(C) decreasing in $(-\infty, 0)$ and increasing in $(0, \infty)$ (D) increasing in $(-\infty, 0)$ and decreasing in $(0, \infty)$						
 c ∈ (2, 4) such that f"(c) equals (A) - 1/4 (B) - 1/8 (C) 1/4 (D) 1/8 22. Statement 1: The function x²(e² + e²) is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e³ and x²e² are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is true; Statement 2 is a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 2 is not a correct explanation for Statement 1. (D) Statement 2 is not a correct explanation for Statement 1. (D) Statemen		A 1 14 - 30 (10 1 1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
 c ∈ (2, 4) such that f"(c) equals (A) - 1/4 (B) - 1/8 (C) 1/4 (D) 1/8 22. Statement 1: The function x²(e² + e²) is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e³ and x²e² are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is true; Statement 2 is a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 2 is not a correct explanation for Statement 1. (D) Statement 2 is not a correct explanation for Statement 1. (D) Statemen	21.	Given $f'(1) = 1$ and $\frac{d}{dx}(f(2x)) = f'(x)$	$\forall x > 0$. If f'(x) is differentia	ble then there exists a number					
 (A) - 1/4 (B) - 1/8 (C) 1/4 (D) 1/8 22. Statement 1: The function x²(e²+e²) is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e² and x²e² are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is true; Statement 2 is a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 2 is not a correct explanation for Statement 1. (D		GA.	on at least cura contest the count						
 Statement 1: The function x²(e^x + e^{-x}) is increasing for all x > 0. [JEE-MAIN Online 2013] Statement 2: The functions x²e^x and x²e^{-x} are increasing for all x > 0 and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is fuce. (B) Statement 1 is true; Statement 2 is false. (C) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. Let f (x) and g (x) are two function which are defined and differentiable for all x ≥ x₀. If f(x₀) = g (x₀) and f¹ (x) > g¹ (x₀) for all x > x₀ then (A) f(x) < g (x) for some x > x₀. (B) f(x) = g (x) for some x > x₀. (C) f(x) > g (x) for some x > x₀. (D) f(x) > g (x) for all x > x₀. 24. The set of value(s) of 'a' for which the function f(x) = ax³/3 + (a+2)x² + (a-1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-∞, -2) (B) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R* be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (C) is decreasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 			(C) 1/4	(D) 1/8					
Statement 2: The functions x^2e^x and x^2e^{-x} are increasing for all $x > 0$ and the sum of two increasing functions in any interval (a, b) is an increasing function in (a, b) . (A) Statement 1 is false; Statement 2 is full. (B) Statement 1 is true; Statement 2 is false. (C) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explanation for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explaintion for Statement 1. (E) Explain the statement 2 is rue; Statement 2 is not a correct explaintion for Statement 1. (E) Expl	22.	Statement 1 • The function $v^2(e^x + e^{-x})$) is increasing for all $x > 0$.	[JEE-MAIN Online 2013]					
functions in any interval (a, b) is an increasing function in (a, b). (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is false. (C) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. 23. Let $f(x)$ and $g(x)$ are two function which are defined and differentiable for all $x \ge x_0$. If $f(x_0) = g(x_0)$ and $f'(x) > g'(x)$ for all $x > x_0$ then (A) $f(x) < g(x)$ for some $x > x_0$ (B) $f(x) = g(x)$ for some $x > x_0$ (C) $f(x) > g(x)$ only for some $x > x_0$ (D) $f(x) > g(x)$ for all $x > x_0$ 24. The set of value(s) of a for which the function $f(x) = \frac{ax^3}{3} + (a+2)x^2 + (a-1)x + 2$ posses a negative point of inflection. (A) $(-\infty, -2) \cup (0, \infty)$ (B) $\{-4/5\}$ (C) $(-2, 0)$ (D) empty set 25. If the function $f(x) = 2x^2 + 3x + 5$ satisfies LMVT at $x = 2$ on the closed interval $[1, a]$, then the value of a is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation $\sin x + x \cos x = 0$ has at least one root in (A) $\left(-\frac{\pi}{2}, 0\right)$ (B) $(0, \pi)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$ 2. The number of roots of the equation $x^2 - 2x - \log_2 1 - x = 3$ is (A) 4 (B) 2 (C) 1 (D) 0 3. If $f: R \to R^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \forall x \in R$, the which of the following is/are always correct (A) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing		Statement 2: The functions $x^{2} = x^{2}$ and $x^{2} = x^{2}$ are increasing for all $x > 0$ and the sum of two in							
 (A) Statement 1 is false; Statement 2 is true. (B) Statement 1 is true; Statement 2 is false. (C) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. 23. Let f (x) and g (x) are two function which are defined and differentiable for all x ≥ x₀. If f(x₀) = g (x₀) and f'(x) > g'(x) for all x > x₀ then (A) f(x) < g (x) for some x > x₀. (B) f(x) = g (x) for some x > x₀. (C) f (x) > g (x) only for some x > x₀. (D) f (x) > g (x) for all x > x₀. 24. The set of value(s) of 'a' for which the function f(x) = (ax³)/3 + (a+2)x² + (a-1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R* be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct (A) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		functions in any interval (a, b) is an in	creasing function in (a, b).	Denother than a					
 (B) Statement 1 is true; Statement 2 is false. (C) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is not a correct explanation for Statement 1. 23. Let f (x) and g (x) are two function which are defined and differentiable for all x ≥ x₀. If f(x₀) = g (x₀) and f'(x) > g'(x) for all x > x₀ then (A) f(x) < g (x) for some x > x₀. (B) f(x) = g (x) for some x > x₀. (C) f(x) > g (x) only for some x > x₀. (D) f(x) > g (x) for all x > x₀. 24. The set of value(s) of 'a' for which the function f(x) = ax³/3 + (a + 2)x² + (a - 1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R* be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct (A) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 				or por long is					
 (C) Statement 1 is true; Statement 2 is true; Statement 2 is a correct explanation for Statement 1. (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for Statement 1. 23. Let f (x) and g (x) are two function which are defined and differentiable for all x ≥ x₀. If f(x₀) = g (x₀) and f' (x) > g' (x) for all x > x₀ then (A) f (x) < g (x) for some x > x₀ (B) f (x) = g (x) for some x > x₀ (C) f (x) > g (x) only for some x > x₀ (D) f (x) > g (x) for all x > x₀ 24. The set of value(s) of 'a' for which the function f(x) = (ax³/3) + (a+2)x² + (a-1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f (x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e^{2x}(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		(B) Statement 1 is true; Statement 2 is	false.						
 (D) Statement 1 is true; Statement 2 is true; Statement 2 is not a correct explanation for statement 1. Let f (x) and g (x) are two function which are defined and differentiable for all x ≥ x₀. If f(x₀) = g (x₀) and f' (x) > g' (x) for all x > x₀ then (A) f (x) < g (x) for some x > x₀. (B) f (x) = g (x) for some x > x₀. (C) f (x) > g (x) only for some x > x₀. (D) f (x) > g (x) for all x > x₀. 24. The set of value(s) of 'a' for which the function f(x) = ax³/3 + (a + 2)x² + (a - 1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set point of 'a' is equal to (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R* be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		(C) Statement 1 is true; Statement 2 is true; Statement 2 is a correct explanation for Statement 1.							
 23. Let f (x) and g (x) are two function which are defined and differentiable for all x ≥ x₀. If f(x₀) = g (x₀) and f'(x) > g'(x) for all x > x₀ then (A) f (x) < g (x) for some x > x₀ (C) f (x) > g (x) only for some x > x₀ (D) f (x) > g (x) for some x > x₀ (D) f (x) > g (x) for all x > x₀ 24. The set of value(s) of 'a' for which the function f(x) = ax³/3 + (a + 2)x² + (a - 1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f (x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e^{2x}(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct (A) g(x) is increasing wherever f(x) is decreasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		(D) Statement 1 is true; Statement 2 is	true; Statement 2 is not a correct	et explanation for Statement 1.					
If $f(x_0) = g(x_0)$ and $f'(x) > g'(x)$ for all $x > x_0$ then (A) $f(x) < g(x)$ for some $x > x_0$ (B) $f(x) = g(x)$ for some $x > x_0$ (C) $f(x) > g(x)$ only for some $x > x_0$ (D) $f(x) > g(x)$ for all $x > x_0$ 24. The set of value(s) of a' for which the function $f(x) = \frac{ax^3}{3} + (a+2)x^2 + (a-1)x + 2$ posses a negative point of inflection. (A) $(-\infty, -2) \cup (0, \infty)$ (B) $\{-4/5\}$ (C) $(-2, 0)$ (D) empty set 25. If the function $f(x) = 2x^2 + 3x + 5$ satisfies LMVT at $x = 2$ on the closed interval $[1, a]$, then the value of a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation $\sin x + x \cos x = 0$ has at least one root in (A) $\left(-\frac{\pi}{2}, 0\right)$ (B) $(0, \pi)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$ 2. The number of roots of the equation $x^2 - 2x - \log_2 1 - x = 3$ is (A) 4 (B) 2 (C) 1 (D) 0 3. If $f: R \to R^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \forall x \in R$, the which of the following is/are always correct (A) $g(x)$ is increasing wherever $f(x)$ is decreasing (B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing	23.	Let f (x) and g (x) are two function	on which are defined and di	ifferentiable for all $x \ge x_0$.					
 (C) f(x) > g(x) only for some x > x₀ (D) f(x) > g(x) for all x > x₀ The set of value(s) of 'a' for which the function f(x) = ax³/3 + (a+2)x² + (a-1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e^{2x}(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct-(A) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		If $f(x_0) = g(x_0)$ and $f'(x) > g'(x)$ for	all $x > x_0$ then						
 24. The set of value(s) of 'a' for which the function f(x) = ax³/3 + (a + 2)x² + (a - 1)x + 2 posses a negative point of inflection. (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 			· · · · · · · · · · · · · · · · · ·						
point of inflection. (A) $(-\infty, -2) \cup (0, \infty)$ (B) $\{-4/5\}$ (C) $(-2, 0)$ (D) empty set 25. If the function $f(x) = 2x^2 + 3x + 5$ satisfies LMVT at $x = 2$ on the closed interval $[1, a]$, then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation $\sin x + x \cos x = 0$ has at least one root in (A) $\left(-\frac{\pi}{2}, 0\right)$ (B) $(0, \pi)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$ 2. The number of roots of the equation $x^2 - 2x - \log_2 1 - x = 3$ is (A) 4 (B) 2 (C) 1 (D) 0 3. If $f: \mathbb{R} \to \mathbb{R}^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \ \forall \ x \in \mathbb{R}$, the which of the following is/are always correct (A) $g(x)$ is increasing wherever $f(x)$ is increasing (B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing									
point of inflection. (A) $(-\infty, -2) \cup (0, \infty)$ (B) $\{-4/5\}$ (C) $(-2, 0)$ (D) empty set 25. If the function $f(x) = 2x^2 + 3x + 5$ satisfies LMVT at $x = 2$ on the closed interval $[1, a]$, then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation $\sin x + x \cos x = 0$ has at least one root in (A) $\left(-\frac{\pi}{2}, 0\right)$ (B) $(0, \pi)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$ 2. The number of roots of the equation $x^2 - 2x - \log_2 1 - x = 3$ is (A) 4 (B) 2 (C) 1 (D) 0 3. If $f: \mathbb{R} \to \mathbb{R}^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \ \forall \ x \in \mathbb{R}$, the which of the following is/are always correct (A) $g(x)$ is increasing wherever $f(x)$ is increasing (B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing	24	The set of value(s) of 'a' for which the fu	nction $f(x) = \frac{ax^3}{1 + (a+2)x^2}$	+(a-1)x + 2 posses a negative					
 (A) (-∞, -2) ∪ (0, ∞) (B) {-4/5} (C) (-2, 0) (D) empty set 25. If the function f(x) = 2x² + 3x + 5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 	24.	The Set of Auto(e) er a	3						
 25. If the function f(x) = 2x²+3x+5 satisfies LMVT at x = 2 on the closed interval [1, a], then the value of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) 2. The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		point of inflection.	(0) (2, 0)	(D) ampty set					
of 'a' is equal to (A) 3 (B) 4 (C) 6 (D) 1 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation $\sin x + x \cos x = 0$ has at least one root in (A) $\left(-\frac{\pi}{2}, 0\right)$ (B) $(0, \pi)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$ 2. The number of roots of the equation $x^2 - 2x - \log_2 1 - x = 3$ is (A) 4 (B) 2 (C) 1 (D) 0 3. If $f: \mathbb{R} \to \mathbb{R}^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \ \forall \ x \in \mathbb{R}$, the which of the following is/are always correct (A) $g(x)$ is increasing wherever $f(x)$ is increasing (B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing		(A) $(-\infty, -2) \cup (0, \infty)$ (B) $\{-4/5\}$	(C)(-2,0)						
(A) 3 (B) 4 (C) 6 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] 1. The equation $\sin x + x \cos x = 0$ has at least one root in (A) $\left(-\frac{\pi}{2}, 0\right)$ (B) $(0, \pi)$ (C) $\left(\pi, \frac{3\pi}{2}\right)$ (D) $\left(0, \frac{\pi}{2}\right)$ 2. The number of roots of the equation $x^2 - 2x - \log_2 1 - x = 3$ is (A) 4 (B) 2 (C) 1 (D) 0 3. If $f: \mathbb{R} \to \mathbb{R}^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \ \forall \ x \in \mathbb{R}$, the which of the following is/are always correct (A) $g(x)$ is increasing wherever $f(x)$ is increasing (B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing	25.								
 EXERCISE (O-2) [SINGLE CORRECT CHOICE TYPE] The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		(D) 1	(C) 6	(D) 1					
 The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		(11) 5							
 The equation sin x + x cos x = 0 has at least one root in (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 			influence of the contract						
 (A) (-π/2, 0) (B) (0, π) (C) (π, 3π/2) (D) (0, π/2) The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 									
 The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 	1.	The equation $\sin x + x \cos x = 0$ has at	· ·	0=d.11=s(A)					
 The number of roots of the equation x² - 2x - log₂ 1 - x = 3 is (A) 4 (B) 2 (C) 1 (D) 0 If f: R → R⁺ be a differentiable function and g(x) = e²x(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 		(π_0) $(B)(0\pi)$	$(C)\left(\pi,\frac{3\pi}{2}\right)$	$O(0, \frac{\pi}{2})$					
 (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e^{2x}(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 			\ _ /	(B) (°, 2)					
 (A) 4 (B) 2 (C) 1 (D) 0 3. If f: R → R⁺ be a differentiable function and g(x) = e^{2x}(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 	2	The number of roots of the equation x ²	$-2x - \log_2 1 - x = 3$ is						
 3. If f: R → R⁺ be a differentiable function and g(x) = e^{2x}(2f(x) - 3(f(x))² + 2(f(x))³) ∀ x ∈ R, the which of the following is/are always correct - (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 	4.	(B) 2	(C) 1	(D) 0					
which of the following is/are always correct - (A) $g(x)$ is increasing wherever $f(x)$ is increasing (B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing	2	If $f: \mathbb{R} \to \mathbb{R}^+$ be a differentiable function and $g(x) = e^{2x}(2f(x) - 3(f(x))^2 + 2(f(x))^3) \ \forall \ x \in \mathbb{R}$ which of the following is/are always correct -							
 (A) g(x) is increasing wherever f(x) is increasing (B) g(x) is increasing wherever f(x) is decreasing (C) g(x) is decreasing wherever f(x) is decreasing 	3.								
(B) $g(x)$ is increasing wherever $f(x)$ is decreasing (C) $g(x)$ is decreasing wherever $f(x)$ is decreasing		(A) $g(x)$ is increasing wherever $f(x)$ is increasing							
(C) $g(x)$ is decreasing wherever $f(x)$ is decreasing		(P) $g(x)$ is increasing wherever $f(x)$ is $g(x)$	lecreasing	onb (x) Ma [r] well					
(C) $g(x)$ is decreasing wherever $f(x)$ is increasing		(C) $g(x)$ is decreasing wherever $f(x)$ is decreasing							
(13) (IV) IV HELLI (INHE WILVAY) TO 1 (10)		(D) $g(x)$ is decreasing wherever $f(x)$ is	increasing	4,0+40-00 (11)					
(D) g(x) is decreasing where		(D) g(x) is decreasing where	0 Sa(B)	DSx (A)					
			The second secon						