1.	If $f(x) = x + x - 1 + x - 1 $	x-2, then-					
	the state of the state of the state of the state of	(A) $f(x)$ has minima at $x = 1$		(B) $f(x)$ has maxima at $x = 0$			
A		xima nor minima at $x = 3$	(D) None of these				
2.	The maximum area of	a right angled triangle with	hypotenuse h is:-	[JEE-MAIN Online 2013]			
1	(A) $\frac{h^2}{\sqrt{2}}$	m h ²	h ²	h ²			
	(A) $\sqrt{2}$	(B) $\frac{h^2}{2}$	(C) $\frac{h^2}{4}$	(D) $\frac{h^2}{2\sqrt{2}}$			
3.	The cost of running a	bus from A to B, isRs.(a	$(v + \frac{b}{v})$, where v km/h	is the average speed of the			
	bus. When the bus travels at 30 km/h, the cost comes out to be Rs. 75 while at 40 km/h, it is Rs. 65.						
	Then the most econom	ical speed (in km/h) of the	bus is: [JEE-MAIN Online 2013]				
~	(A) 40	(B) 60 ·	(C) 45	(D) 50			
4.	The greatest value of x	$^3 - 18x^2 + 96x$ in the interv	val (0, 9) is-				
	(A) 128	(B) 60	(C) 160	(D) 120			
5.	Difference between the	e greatest and the least val	ues of the function f(x)	$= x(ln x - 2) on [1, e^2] is$			
	(A) 2	(B) e	(C) e ²	(D) 1			
6.	The sum of lengths of t	he hypotenuse and another	r side of a right angled to	riangle is given. The area of			
_	the triangle will be man	kimum if the angle betwee	n them is:	Paris 1			
A.	$(A) \pi/6$	(B) π/4	(C) $\pi/3$	(D) $5\pi/12$			
7.	Consider the function $f(x) = x \cos x - \sin x$, then identify the statement which is correct.						
1	(A) f is neither odd nor even (B) f is monotonic decreasing at $x = 0$ Leave						
//	(C) f has a maxima at		(D) f has a minima at				
8.	If $f(x) = x^3 + ax^2 + bx + c$ is minimum at $x = 3$ and maximum at $x = -1$, then-						
	(A) $a = -3$, $b = -9$, $c = 0$		(B) $a = 3$, $b = 9$, $c = 0$ $A = 1$ him let $a = 0$				
	(C) $a = -3$, $b = -9$, $c \in$	R	(D) none of these	1 Sino cuso , 12			
1	x ²			2 2000 6010 12			
9.	If $f(x) = \int_{x}^{x^2} (t-1) dt$, $1 \le x \le 2$, then global maximum value of $f(x)$ is (A) 1 (B) 2 (C) 4 (D) 5						
	(Δ) 1	· (B) 2	SHI	DO 5 12 8/4 20			
				(B) 3 d+ (1+coss			
10.	Minimum value of the	function $f(x) = \sum_{k=1}^{5} (x-k)^2$	is at-	$\overline{ot} = 0$			
	(A) x = 2	(B) $x = 5/2$	(C) x = 3	(D) $x = 5$			
	Shari i an extre	numan represident (B)	ot.x = px. n is even				
11.	Range of the function 1	$f(x) = \frac{\ln x}{\sqrt{1 - x}}$ is					
		√x	vine agidinasigumale al				
	(1) ()	(D) (as a ²)	$(e)\left(-\infty,\frac{2}{e}\right)$	(D) $\begin{pmatrix} 1 \end{pmatrix}$			
	$(A)(-\infty, e)$	(B) $(-\infty, e^2)$	(c) (e]	(D) $\left(-\infty, \frac{1}{e}\right)$			

12.	If $ax + \frac{b}{x} \ge c$ for all posi	tive x, where a, b, $c > 0$, th	en-			
	(A) $ab < \frac{c^2}{4}$	(B) $ab \ge \frac{c^2}{4}$	(C) $ab \ge \frac{c}{4}$	(D) None of these		
13.	Two sides of a triangle are to have lengths 'a' cm & 'b' cm. If the triangle is to have the maximum area, then the length of the median from the vertex containing the sides 'a' and 'b' is					
	(A) $\frac{1}{2}\sqrt{a^2+b^2}$	(B) $\frac{2a+b}{3}$	(C) $\sqrt{\frac{a^2 + b^2}{2}}$			
14.	$f(x) = 1 + [\cos x]x$, in $0 \le x \le \frac{\pi}{2}$ (where [.] denotes greatest integer function)					
	(A) has a minimum val	ue 0	(B) has a maximum va	due 2		
	(C) is continuous in 0	$\left[\frac{\pi}{2}\right]$ at and add to	(D) is not differentiable	$e \text{ at } x = \frac{\pi}{2}$		
15.	A rectangle has one side on the positive y-axis and one side on the positive x - axis. The upper right					
	hand vertex of the recta	angle lies on the curve y =	$\frac{\ln x}{x^2}$. The maximum area of the rectangle is			
87)	(A) e^{-1}	(B) e ^{-1/2}	(C) 1	(D) $e^{1/2}$		
16.	If $(x-a)^{2m}(x-b)^{2n+1}$, where m and n are positive integers and $a > b$, is the derivative of a function f,					
	then- $P = a \text{ gives a maximum}$					
	(A) $x = a$ gives neither a maximum, nor a minimum (B) $x = a$ gives a maximum (C) $x = b$ gives neither a maximum nor a minimum (D) None of these					
17	The minimum value of asecx + bcosecx, $0 < a < b$, $0 < x < \pi/2$ is-					
17.	(A) a + b	(B) $a^{2/3} + b^{2/3}$	(C) $(a^{2/3} + b^{2/3})^{3/2}$	(D) None of these		
18.	The positive y-axis O is a point on the positive y-axis and 'O' is the origin. If the line					
	passing through P and Q is tangent to the curve $y = 3 - x^2$ then the minimum area of the triangle OPQ, is $y' = -\frac{2\pi}{2}$ (B) 4 $y = 3 + \frac{2\pi}{2} + \frac{2\pi}{2}$ (C) 8 A minimum value of sinx cos2x is-					
	OPQ, is $y' = -\frac{2n}{2}$ (A) 2 $(y') = -\frac{2n}{2}$	(B) 4 $y = 3 + t^2 = -\frac{1}{3}$	(C) 8 +2+5 + 21	13 (D) 9 da 20		
19.	A minimum value of si	nx cos2x is- y +24 "	L≤x≤2, then global	$15(1-i) \cdot 1 = (x_0) \cdot 2i = 0$		
	(A) 1	(B) -1	(C) $-2/3\sqrt{6}$	(D) None of these		
20.	The rate of change of the	the function $f(x) = 3x^5 - 5$	$x^3 + 5x - 7$ is minimum	when		
N.	(A) x = 0	(B) $x = 1/\sqrt{2}$	$(C) x = -1/\sqrt{2}$	$(B) x = \pm 1/\sqrt{2}$		
21.	For the function $f(x) =$	$\int_{0}^{x} \frac{\sin t}{t} dt, \text{ where } x > 0,$	(0) x = 5/2			
	(A) maximum occurs a		(B) minimum occur	s at $x = n\pi$, n is odd		
	$\sum_{n=0}^{\infty} a_n \cos n = n\pi$, n is odd (D) None of these					
22	The least area of a circle circumscribing any right triangle of area S is:					
1	(A) πS	(B) 2πS	(C) $\sqrt{2} \pi S$	(D) 4 π S		