		Jui itot oyoto	7.
The maximum efficie	ency of a heat engine	e operating between 100°C	and 25°C is:-
(A) 20.11%	(B) 22.2%	(C) 25.17%	(D) None
A heat engine operati	ng between 227°C	and 27°C absorbs 2 Kcal o	f heat from the 227°C reservoir
reversibly per cycle.	The amount of wo	ork done in one cycle is :-	
(A) 0.4 Kcal	(B) 0.8 Kcal	(C) 4 Kcal	(D) 8 Kcal
A reversible heat eng	gine A (based on ca	arnot cycle) absorbs heat fi	rom a reservoir at 1000 K and
rejects heat to a reser	voir at T ₂ . A secon	nd reversible engine B abs	orbs, the same amount of heat
as rejected by the en	gine A, from the re	eservoir at T ₂ and rejects 6	energy to a reservoir at 360K.
	engines A and B ar	re the same then the temp	
(A) 680 K	(B) 640 K	(C) 600 K	(D) None
		opy calculation	
ΔS for the reaction; N	$MgCO_3(s) \longrightarrow Mg$	$O(s) + CO_2(g)$ will be:	(D) or PV=RT.
(A) 0	(B) -ve	(C)+ve	(D) ∞
Change in entropy is n	negative for :-		mcv (T, -72)
(A) Bromine $(\ell) \longrightarrow$	Bromine (g)		THEY (1)
(B) $C(s) + H_2O(g)$ —	\rightarrow CO(g) + H ₂ (g)		A C
(C) (C) N ₂ (g, 10 atm,		1 atm, 298K)	
D) Fe(at 400 K) \longrightarrow	Fe(at 300 K)	TT AST	TL 086
For which reaction from	m the following, Δ S	S will be maximum?	and the last the last
(A) $Ca(s) + \frac{1}{2}O_2(g) -$		(B) $CaCO_3(s) \longrightarrow$	
$(C)C(s) + O_2(g) \longrightarrow$		(D) $N_2(g) + O_2(g) -$	
When two gases are m	ixed the entropy:-	an and Valla	Entropy = &
(A) Remains constant		(C) Increases	(D) Becomes zero
For the process, CO ₂ (s)			enitare december (2)
A) Both ΔH and ΔS		(B) ΔH is negative a	and ΔS is +ve
(C) Δ H is +ve and Δ S is		(D) Both ΔH and ΔS	S are -ve
For conversion C(graph	nite) > C(Diamond)), the ΔS is :-	19 18 18 19 18 18 18 18 18 18 18 18 18 18 18 18 18
(A) Zero		(B) Positive	
(O) NY		(D) Can not be predi-	
vnl sized r	pieces of the same m	etal at different temperature	es T _h (hot piece) and T _c (cold
piece) are brought into the	hermal contact and is	solated from it's surrounding.	The total change in entropy
of system is given by		S d 2.	
T + T.	T_2	$(C) C \ln \left(T_c + T_h\right)^2$	(D) C ln $\frac{\left(T_c + T_h\right)^2}{4T_c T}$
(A) C $\ln \frac{T_c + T_h}{2T}$	(B) C III T	2T. T	(D) C III 4T. T

11.	· 2 mole of ideal gas at 27°C temp. is expanded reversibly from 2 lit. to 20 lit. Find expanded reversibly from 2 lit. to 20 lit.					
	(R = 2 cal/mol K):-	(k-D) (x)	DS SHELSHOOT			
	(A) 92.1	(B) 0	(C) 4	(D) 9.2		
12.	5 mole of an ideal gas	expand reversibly from a	volume of 8 dm ³ to 80dm	³ at a temperature of 27°C. The		
	change in entropy is:-					
	(A) 41.57 JK ⁻¹	(B) - 95.73 JK ⁻¹	(C) 95.73 JK ⁻¹	(D) -41.57 JK^{-1}		
13.				the spontaneity of any process		
	is:-					
		undings > 0	(B) $\Delta S_{\text{system}} > 0$ on	ly and and apply		
. 2		only				
14.			A STATE OF THE RESIDENCE OF THE PARTY OF THE	from 200 to 300° C reversibly		
	and isochorically :-	(C) 600 K	(3) (40 (4)	A (080 LA)		
	3 (200)	E (572)	(572)	2 (572)		
	(A) $\frac{3}{2}$ R ln $\left(\frac{300}{200}\right)$	(B) $\frac{5}{2} R \ln \left(\frac{573}{273} \right)$	(C) $3R \ln \left(\frac{573}{473} \right)$	(D) $\frac{3}{2}$ R.ln $\left(\frac{373}{473}\right)$		
15	(0)	Sign of the same o	91-113)			
15.				it's boiling point 300 K, then		
				(P) N C.1		
16						
16.				expansion at 243.6 K from		
				(D) 2.77 as 1/1/		
17.						
1/.	entropy for the reaction, $H_2 + Cl_2 \longrightarrow 2HCl$ is:					
		*		(D) 20 IK-1 mol-1		
	()			(B) 20 JR MOI		
18.	Which of the following	ng pairs of a chemical rea	action is certain to result	in a spontaneous reaction.		
	(A) endothermic and decreasing disorder (B) exothermic and increasing disorder					
	(C) endothermic and increasing disorder		(D) exothermic and	(D) exothermic and decreasing disorder		
19.	What can be conclude	ed about the values of ΔI	H and ΔS from this grap			
	(A) $\Delta H > 0$, $\Delta S > 0$					
	(B) $\Delta H > 0$, $\Delta S < 0$	(B) 40 JK ⁻¹ mol ⁻¹ (C) 60 JK ⁻¹ mol ⁻¹ (D) 20 JK ⁻¹ mol ⁻¹ Gibb's free energy g pairs of a chemical reaction is certain to result in a spontaneous reaction decreasing disorder (B) exothermic and increasing disorder				
	(C) $\Delta H < 0$, $\Delta S > 0$	5700011(1)				
	(D) $\Delta H < 0$, $\Delta S < 0$			100 200 300 400 500		
20.		Y. and XY, are 60,	40 and 50 JK ⁻¹ mol ⁻¹ re	Temperature K		
20.						
	4			ure will be :-		
	(A) 1250 K	(B) 500 K	(C) 750 K	(D) 1000 K		

FIER IS							
21.	For the reaction at 300 K						
	$A(g) + B(g) \longrightarrow C(g)$						
	$\Delta U = -3.0 \text{ kcal}$; $\Delta S = -10.0 \text{ cal/K}$						
	value of ΔG is ?		The state of the state of				
	(A) -600 cal (B) -66	00 cal	(C) -6000 cal	(D) none			
22.	The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K is:-						
	$(A) - \Delta G^{\circ} = RT \ln K$		(B) $\Delta G = RT \ln K$				
	$(C) - \Delta G = RT \ln K$		(D) $\Delta G^{\circ} = RT \ln K$				
23.	For the reaction takes place at certain temperature $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$, if equilibrium						
	pressure is X bar, then $\Delta_r G^\circ$ would be:-						
	(A) – 2 RT ln X		$(B) - RT \ln (X - \ln X)$	2)			
	(C) - 2 RT (ln X-ln 2)		(D) None of these				
24.	What is the free energy change (Δ	What is the free energy change (ΔG) when 1.0 mole of water at 100°C and 1 atm pressure is converted					
	into steam at 100°C and 1 atm						
	(A) 80 cal (B) 540	cal	(C) 620 cal	(D) zero			
25.	What is the free energy change (Δ	ole of water at 100°C and	1 atm pressure is converted				
	into steam at 100°C and 2 atm						
	(A) Zero cal (B) 540		(C) 517.13 cal	(D) 510 cal			
26.	For a reaction at 25°C enthalpy change (ΔH) and entropy change (ΔS) are -11.7×10^3 J mol ⁻¹ and -105 J mol ⁻¹ K ⁻¹ respectively. The reaction is :						
			(C) At equilibrium	(D) Can't say anything			
27				$\Delta H = -20 \text{ KJ}$			
27.	For hypothetical reversible reaction, $\frac{1}{2} A_2(g) + \frac{3}{2} B_2(g) \longrightarrow AB_3(g)$; $\Delta H = -20 \text{ KJ}$ if standard entropies of A_2 , B_2 and AB_3 are 60, 40 and 50 JK ⁻¹ mole ⁻¹ respectively. The above						
	reaction will be in equilibrium at the temperature:						
	(A) 400 K (B) 500		(C) 250 K	(D) 200 K			
28.	For the hypothetical reaction, $A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$						
-0.	Δ G and Δ S are 20 kJ/mole and -20 JK ⁻¹ mol ⁻¹ respectively at 200 K.						
	If ΔC is 20 JK ⁻¹ mol ⁻¹ then ΔH	at 400 K is:-		erount sympton T(A)			
	(A) 20 k I/mole (B) 7.98	3 kJ/mole	(C) 28 kJ/mole	(D) None of these			
29.	Identify the correct statement for o	hange of Gibbs	energy for a system (ΔG_s	ystem) at constant temperature			
	and pressure.						
	(A) If $\Delta G_{\text{system}} > 0$, the process is spontaneous.						
	(P) If AG = 0 the system has attained equilibrium.						
	(C) If $\Delta G_{\text{system}} = 0$, the system is still moving in a particular direction.						
	(D) If $\Delta G_{\text{system}} < 0$, the process is not spontaneous.						
30.	If A CO > O for a reaction then:						
30.	If $\Delta G^{\circ} > 0$ for a reaction then:						
		$(A) K_p > 1$					
	(B) $K_p < 1$						
	(C) The products predominate in the equilibrium mixture						
	(D) None						