Sin	igle correct:					
X.	The boiling point of C ₆ H ₆ , CH ₃ OH, C ₆ H ₅ NH ₂ and C ₆ H ₅ NO ₂ are 80°C, 65°C, 184°C and 212 C respectively which will show highest vapour pressure at room temperature:					
	(A) C H (B) CH OH (C) C.H.NH ₂ (D) $C_6 C_5 C_2$					
2.	Mole fraction of A vapours above the solution in mixture of A and B ($X_A = 0.4$) will be					
	[Given: $P_A^{\circ} = 100 \text{ mm Hg and } P_B^{\circ} = 200 \text{ mm Hg}$]					
	(A) 0.4 (B) 0.8 (C) 0.25 (D) none of these					
3.	At a given temperature, total vapour pressure in Torr of a mixture of volatile components A and B is given by					
	$P_{Total} = 120 - 75 X_{B}$					
	hence, vapour pressure of pure A and B respectively (in Torr) are					
	(A) 120, 75 (B) 120, 195 (C) 120, 45 (D) 75, 45					
4.	Two liquids A & B form an ideal solution. What is the vapour pressure of solution containing 2 moles					
	of A and 3 moles of B at 300 K? [Given : At 300 K, Vapour pr. of pure liquid A (P_A^o) = 100 torr,					
	Vapour pr. of pure liquid B (P_B^o) = 300 torr]					
	(A) 200 torr (B) 140 torr (C) 180 torr (D) None of these					
5.	If Raoult's law is obeyed, the vapour pressure of the solvent in a solution is directly proportional to					
	(A) Mole fraction of the solvent (B) Mole fraction of the solute					
	(C) Mole fraction of the solvent and solute (D) The volume of the solution					
6.	1 mole of heptane (V. P. = 92 mm of Hg) was mixed with 4 moles of octane (V. P. = 31mm of Hg).					
	The vapour pressure of resulting ideal solution is:					
	(A) 46.2 mm of Hg (B) 40.0 mm of Hg (C) 43.2 mm of Hg (D) 38.4 mm of Hg					
7.	Mole fraction of A vapours above solution in mixture of A and B ($X_A = 0.4$) will be :-					
	$(P_{A}^{\circ} = 100 \text{mm}, P_{B}^{\circ} = 200 \text{mm})$					
	(A) 0.4 (B) 0.8 (C) 0.25 (D) None					
8.	The vapour pressure of a pure liquid 'A' is 70 torr at 27°C. It forms an ideal solution with another					
	liquid B. The mole fraction of B is 0.2 and total vapour pressure of the solution is 84 torr at 27°C.					
	The vapour pressure of pure liquid B at 27°C is					
	(A) 14 (B) 56 (C) 140 (D) 70					
9.	At 88 °C benzene has a vapour pressure of 900 torr and toluene has a vapour pressure of 360 torr.					
	What is the mole fraction of benzene in the mixture with toluene that will boil at 88 °C at 1 atm. pressure,					
	benzene - toluence form an ideal solution:					
	(A) 0.416 (B) 0.588 (C) 0.688 (D) 0.740					
0.	The exact mathematical expression of Raoult's law is $(n = moles of solute; N = moles of solvent)$					
	(A) $\frac{P^0 - P_s}{P^0} = \frac{n}{N}$ (B) $\frac{P^0 - P_s}{P^0} = \frac{N}{n}$ (C) $\frac{P^0 - P_s}{P_s} = \frac{n}{N}$ (D) $\frac{P^0 - P_s}{P^0} = n \times N$					
	P^{0} N P^{0} $= n \times N$					

11.	to the solvent. The mole fraction of solute in solution is 0.2, what would be mole fraction of the solven						
		r pressure is 20 mm of					
	(A) 0.2	(B) 0.4		(D) 0.8			
12.	The vapour pressure	The vapour pressure of a solution having solid as solute and liquid as solvent is:					
	(A) Directly proport	tional to mole fraction o	f the solvent				
	(B) Inversely proportional to mole fraction of the solvent						
	(C) Directly proportional to mole fraction of the solute						
	(D) Inversely propartional to mole fraction of the solute						
13. One mole of non volatile solute is dissolved in two moles of water. The vapour pressure of the strelative to that of water is							
	(A) $\frac{2}{3}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{3}{2}$			
14.	The vapour pressure	e of pure A is 10 torr an	d at the same tempera	ture when 1 g of B is dissolved			
in 20 gm of A, its vapour pressure is reduced to 9.0 torr. If the molecular mass of A is 200 amu							
	the molecular mass			Alle Real Control of the Control of			
	(A) 100 amu	(B) 90 amu	(C) 75 amu	(D) 120 amu			
15.				atm. from 0.80 atm on addition			
				etion of (Y) in the solution is:-			
	(A) 0.20	(B) 0.25					
16.	Vapour pressure of C	CCl ₄ at 25°C is 143 mm Hg	g. 0.5 gm of a non-volatil	e solute (mol. wt. 65) is dissolved			
				sity of $CCl_4 = 1.58 \text{ gm/cm}^3$)			
	(A) 141.93 mm		(C) 199.34 mm				
17.	Among the following	ng, that does not form ar	ideal solution is:				
	(A) C ₆ H ₆ and C ₆ H ₅ CH ₃		(B) C ₂ H ₅ Cl and C ₂	(B) C ₂ H ₅ Cl and C ₆ H ₅ OH			
	(C) C ₆ H ₅ Cl and C ₆ H			(D) C_2H_5Br and C_2H_5I			
18.	Colligative propertie	es of the solution depend		Married of the Friedrick			
(A) Nature of the solution (B) Nature of the solvent				olvent			
	(C) Number of solut	e particles	(D) Number of mo				
19.	Elevation of boiling	point of 1 molar aqueon	us glucose solution (de	ensity = 1.2 g/ml) is			
	(A) K _b	(B) 1.20 K _b	(C) 1.02 K _b	(D) 0.98 K _b			
20.	When common salt	is dissolved in water		(2) 0.50 K _b			
	(A) Melting point of	the solution increases	(B) Boiling point of	of the solution increases			
	(C) Boiling point of	the solution decreases	(D) Both Melting no	pint and Date			
21.	(C) Boiling point of the solution decreases (D) Both Melting point and Boiling point is decreases What should be the freezing point of aqueous solution containing 17 gm of C_2H_5OH in 1000 gm of water (water $K_2 = 1.86 \text{ deg} - \text{kg mol}^{-1}$)						
	water (water $K_f = 1.86 \text{ deg} - \text{kg mol}^{-1}$)						
	(A) - 0.69°C	(B) -0.34 °C	(C) 0.0°C	(D) 0.240G			
22.	The boiling point of	an aqueous solution of a	a non volatile solute in	(D) 0.34°C			
	2. The boiling point of an aqueous solution of a non volatile solute is 100.15 °C. What is the freezy point of an aqueous solution obtained by diluting the above solution with an equal volume of war. ? The values of K, and K, for water are 0.512 and 1.86 K.						
	? The values of K _b and K _f for water are 0.512 and 1.86 K molality ⁻¹ :						
	(A) -0.544 °C	(B) -0.512 °C	(C) -0.272 °C				
	AND VIVE OF		(0) 0.272	(D) -1.86 °C			

35.	The substance A why vant Hoff's factor w		nt B shows the molecu	lar mass corresponding to A ₃ . The		
	(A) 1	(B) 2	(C) 3	(D) 1/3		
36.	The lowerring of vapour pressure of 0.1M aqueous solutions of NaCl, CuSO ₄ and K ₂ SO ₄ are:					
	(A) All equal		(B) In the ratio of 1:1:1.5			
	(C) In the ratio of 3:2:1		(D) In the ratio of 1.5:1:2.5			
37.	The value of observed and calcutated molecular wieght of silver nitrate are 92.64 and 170 respectively. The degree of dissociation of silver nitrate is:					
	(A) 60%	(B) 83.5 %	(C) 46.7%	(D) 60.23%		
38.	The freezing point of 1 molal NaCl solution assuming NaCl to be 100% dissociated in water is: $(K_f = 1.86 \text{ K Molality}^{-1})$					
	(A) -1.86 °C	(B) −3.72 °C	(C) +1.86 °C	(D) + 3.72 °C		
39.	The molal elevation constant of water is 0.51. The boiling point of 0.1 molal aqueous NaCl solution is nearly:					
	(A) 100.05 °C	(B) 100.1 °C	(C) 100.2° C	(D) 101.0° C		
40.	What is the freezing point of a solution containing 8.1 gm. of HBr in 100gm. water assuming the acid to be 90% ionised (K_f for water=1.86 K molality ⁻¹):-					
	(A) 0.85°C	(B) -3.53°C	(C) 0°C	(D) -0.35°C		
41.	If a ground water contains H_2S at concentration of 2 mg/l, determine the pressure of H_2S in head space of a closed tank containing the ground water at 20°C. Given that for H_2S , Henry's constant is equal to 6.8×10^3 bar at 20°C.					
	(A) 720 Pa	(B) $77 \times 10^2 \text{ Pa}$	(C) 553 Pa	(D) $55 \times 10^2 \text{Pa}$		
		in a de la company				
		m is tell is way as build		constituent of a constituent a		
				The Arrival Arrival		

The Vant Hoff factor (i) for a dilute solution of $K_3[Fe(CN)_6]$ is (Asuming 100% ionsation):

(B) 4

(C)5

(D) 0.25

34.

35.

(A) 10