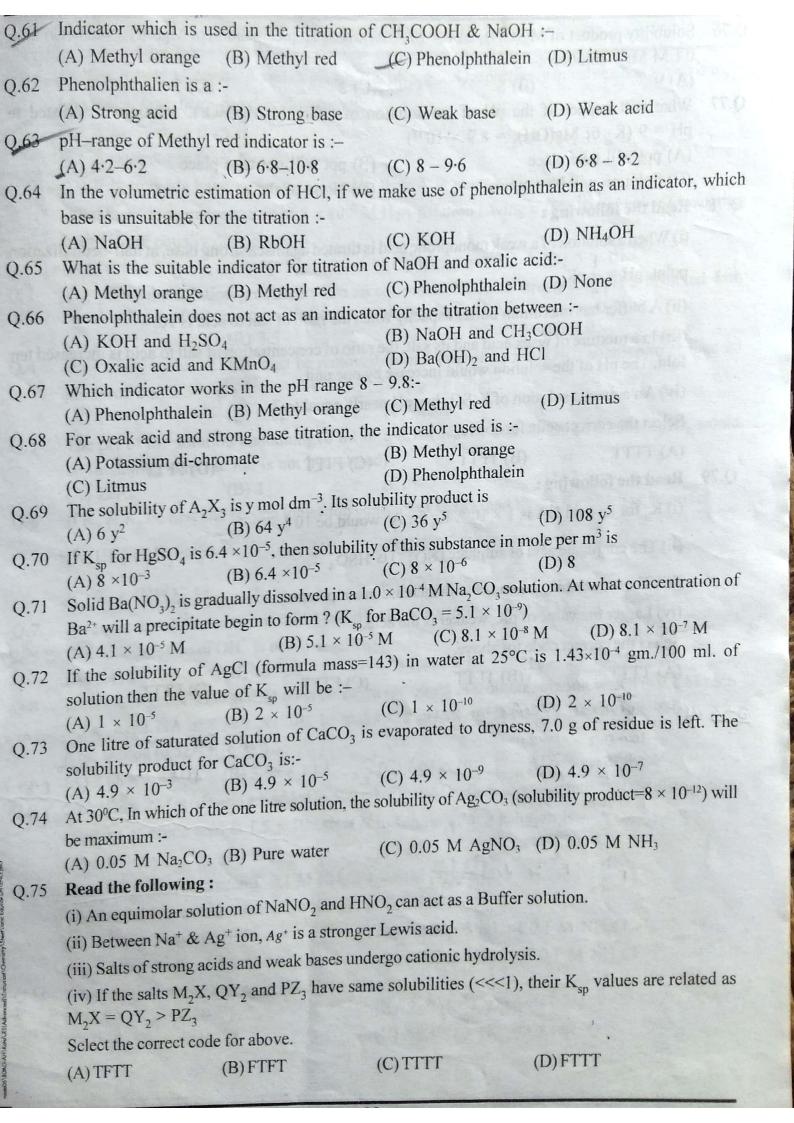

Single	Single correct					
Q.1	The conjugate acid of NH ₂ is					
	(A) NH ₃	(B) NH ₂ OH	(C) NH ₄	(D) N_2H_4		
Q.2	Which of the following is not a Bronsted acid:-					
	(A) CH ₃ NH ₄		(C) H ₂ O	(D) HSO 4		
Q.3	In the reaction		SECTION AND ADDRESS.			
	$HNO_3 + H_2O \longrightarrow H_3O^+ + NO_3^-$, the conjugate base of HNO_3 is :-					
	(A) H ₂ O	(B) H ₃ O ⁺	(C) NO 3	(D) H_3O^+ and NO_3^-		
Q.4	Out of the following, amphiprotic species in aqueous medium are					
	I: HPO ₃ ²⁻		III H ₂ PO ₄	AV HCO3		
	(A) I, III, IV	(B) I and III	(III and IV	(D) All		
Q.5	When ammonia is ac	lded to water it decrea	ses the concentration of	of which of the following ion		
	(A) OH-	(B) H ₃ O+	(C) NH ₄	(D) NH ₄ ⁺ & OH		
Q.6	Which of the following pair is Lewis acid & Lewis base & Product of these is also Lewis base					
	(A) BF ₃ , NH ₃	(B) SiCl ₄ , 2Cl	JCYCH ₃ [⊕] , ^O OC ₂ H ₅	(D) All of these		
Q.7	Degree of dissociation of 0.1 N CH ₃ COOH is :- (Dissociation constant = 1×10^{-5})					
	(A) 10 ⁻⁵	(B) 10 ⁻⁴	(C) 10^{-3}	(D) 10^{-2}		
Q.8	Ionic product of water will increase, if:-					
	(A) Pressure is decre	eased	(B) H ⁺ is added			
	(C) OH is increase	d	(D) Temperature is in			
2.9			/lit. what is the value	of K _w at 60°C:-		
	(A) 10 ⁻⁶			(D) 10 ^{-13.4}		
Q.10			6. Its H ⁺ ion conc. wi	Il be :-		
	(A) Reduced to half		(B) Doubled	A :		
fore b	(©) Reduced by 100	U times				
Q.11		(B) 11	(C) 5	be:- 0'02 AS		
Simple.	(A) 2			(D) 7		
Q.12	The concentration of	The concentration of [H ⁺] and concentration of [OH] ⁻ of a 0.1 M aqueous solution of 2% ionised weak acid is [ionic product of water = 1×10^{-14}]				
600	weak acid is floine p	nd 5 × 10-11 M	(B) 1×10^{-3} M and	3 × 10-11 M		
	(A) 0.02×10^{-3} M and	$5 \times 10^{-12} \text{ M}$	(D) 3×10^{-2} M and	$4 \times 10^{-13} \text{ M}$		
	A = agreeus solution	of HCl is 10 ⁻⁹ M He	Cl. The pH of the solu	tion should be:		
QA3	(A) 9	(B) Between 6 and 7		(D) Unpredictable		
0.14	e am NaOH and 4.9	gm H ₂ SO ₄ are presen	t in one litre of the so	olution. What is its pH		
Q.14	(A) 1 2 Nach A MUSU	(B) 13 Na 54 +2420	(C) 12	(D) 2		
Q.15	What is the quantity	of NaOH present in 2	50 cc of the solution.	so that it gives a pH = 13 :		
Q.13	(A) 10 ⁻¹³ g	(B) 10 ⁻¹ g	(C) 1.0 g	(D) 4.0 g		
	The state of the s			NAME OF TAXABLE PARTY OF TAXABLE PARTY.		


2+5

This phenomenon is called: (A) Colloidal (B) Buffer action (C) Acidity (D) Salt balance Which of the following solutions does not act as buffer: (A) H,PQ, + NaH,PQ, (B) NaHCQ, + H ₂ CO, (C) NH ₄ Cl + HCl (D) CH,COOH + CH,COONa Half of the formic acid solution is neutralised on addition of a KOH solution to it. IfK, (HCOOH) = 2 × 10 ⁴ then pH of the solution is: - (log 2 = 0.3010). (A) 3.6990 (B) 10.3010 (C) 3.85 (D) 4.3010 Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity: (A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 Q.55 N acctic acid was titrated with NoOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be:-{K ₈ } = 10 ³ } (A) 5 + log 1/3, 5, 5 + log 3 (B) 5 + log 3, 4, 5 + log 1/3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 Q.56 When 20 ml of NoOH are added to 10 ml of M HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid—base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (Hln) and base (In) forms of the indicator by the expression:- (A) log [In 1] pK _{In} - pH (B) log [In 1] = pH - pK _{In} (C) log [In 1] epH + pK _{In} (D) log [In 1] = ph - ph	Q.51	The pH of blood is maintained by CO ₂ and H ₂ CO ₃ in the body and chemical constituents of blood				
Q.52 Which of the following solutions does not act as buffer: (A) $H_3PO_4 + NaH_2PO_4$ (B) $NaHCO_3 + H_3CO_3$ (C) $NH_2C1 + HC1$ (D) $CH_3COOH + CH_3COOH + CH_3C$		This phenomenon is called :-				
(A) H ₃ PO ₄ + NaH ₂ PO ₄ (B) NaHCO ₃ + H ₂ CO ₃ (C) NH ₄ Cl + HCl (D) CH ₃ COOH + CH ₄ COONa Q.53 Half of the formic acid solution is neutralised on addition of a KOH solution to it. IfK ₄ (HCOOH) = 2 × 10 ⁴ then pH of the solution is: - (log 2 = 0.3010) Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity: - (A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 Q.55 No acctic acid was titrated with NoAOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be:-[K ₄ = 10 ⁻³] (A) 5 + log 1/3, 5, 5 + log 3 (B) 5 + log 3, 4, 5 + log 1/3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 (C) 5 - log 1/3 NaOH are added to 10 ml of M/10 HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (Hln) and base (ln') forms of the indicator by the expression: (A) log [Hin] = pK _{In} - pH (B) log [Hin] = pK _{In} - pH Q.58 Calculate the pH range in which an acid indicator with K _{nod} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻¹ M. Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K _n (indicator) = 1 × 10 ⁻¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 0.55 ± 1 (D) 11.0 ± 1 (D) 60 An acid-base indicator has a K ₁ = 1.0 × 10 ⁻⁵ . The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		(A) Colloidal (B) Buffer action	(C) Acidity	(D) Salt balance		
(C) NH ₄ Cl + HCl (D) CH ₃ COOH + CH ₃ COONa Q.53 Half of the formic acid solution is neutralised on addition of a KOH solution to it. IfK ₈ (HCOOH) = 2 × 10 ⁻⁴ then pH of the solution is: - (log 2 = 0.3010) (A) 3.6990 (B) 10.3010 (C) 3.85 (D) 4.3010 Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity: - (A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 (Q.55) N/10 acetic acid was titrated with N/10 NaOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be:-[K _e = 10 ⁻⁵] (A) 5 + log 1/3, 5, 5 + log 3 (B) 5 + log 3, 4, 5 + log 1/3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 Q.56 When 20 ml of M/20 NaOH are added to 10 ml of M/10 HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (Hln) and base (In ⁻¹) forms of the indicator by the expression:- (A) log [Hin] pK _{In} - pH (B) log [Hin] pK _{In} - pH (C) log [In ⁻¹] = pH + pK _{In} (D) log [In ⁻¹] = pH - pK _{In} - pH Q.58 Calculate the pH range in which an acid indicator with Naod (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻⁹ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K ₈ (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a K ₈ = 1.0 × 10 ⁻⁵ . The acid form of the indicator from 80% red to 80% blue.	Q.52	2 Which of the following solutions does not act as buffer :-				
Q.53 Half of the formic acid solution is neutralised on addition of a KOH solution to it. IfK _a (HCOOH) = 2 × 10 ⁻⁴ then pH of the solution is: - (log 2 = 0.3010) (A) 3.6990 (B) 10.3010 (C) 3.85 (D) 4.3010 Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity:- (A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 \[\begin{align*} \text{N} \\ \text{10} \text{ acetic acid was titrated with } \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(A) H3PO4 + NaH2PO4				
If K _a (HCOOH) = 2×10^{-4} then pH of the solution is : - (log $2 = 0.3010$) (A) 3.6990 (B) 10.3010 (C) 3.85 (D) 4.3010 Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity:- (A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 \[\begin{align*} \begin{align*} \text{N} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\		(C) NH ₄ Cl + HCl	(D) CH ₃ COOH + C	H ₃ COONa		
(A) 3.6990 (B) 10.3010 (C) 3.85 (D) 4.3010 Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity:- (A) 0.4 (B) 0.05 (C) – 0.05 (D) 2.5 Q.55 Notate acid was titrated with Nota Notation in Notation is over then the pH of the solution will be:-[K _a = 10-5] (A) 5 + log 1/3, 5, 5 + log 3 (B) 5 + log 3, 4, 5 + log 1/3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 Q.56 When 20 ml of Monother added to 10 ml of Monother in Notation will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection, pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In') forms of the indicator by the expression:- (A) log [In-1] = pK _{In} - pH (B) log [In-1] = pH - pK _{In} (C) log [In-1] = pH + pK _{In} (D) log [In-1] = pH - pK _{In} Q.58 Calculate the pH range in which an acid indicator with K _{sold} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ° M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K _b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 An acid-base indicator has a K _b = 1.0 × 10 ⁻⁵ . The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	Q.53					
Q.54 When 0.02 moles of NaOH are added to a litre of buffer solution, its pH changes from 5.75 to 5.80. What is its buffer capacity:- (A) 0.4 (B) 0.05 (C) – 0.05 (D) 2.5 Q.55 $\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ NaOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be :-[K _s = 10 ⁻³] (A) 5 + log 1/3, 5, 5 + log 3 (B) 5 + log 3, 4, 5 + log 1/3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 Q.56 When 20 ml of $\frac{M}{20}$ NaOH are added to 10 ml of $\frac{M}{10}$ HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid—base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In ⁻) forms of the indicator by the expression:- (A) $\log \frac{[H \ln]}{[\ln -]} = pK_{ln} - pH$ (B) $\log \frac{[H -]}{[\ln -]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{local} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 (D) 10.0 ± 1 (D) 11.0 ± 1 (D) An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		If K_a (HCOOH) = 2×10^{-4} then pH of the so	olution is : $-(\log 2)$	0.3010)		
5.80. What is its buffer capacity:- (A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 \[\begin{align*} \text{N} \text{ acetic acid was titrated with } \frac{N}{10} \text{ NaOH. When 25%, 50% and 75% of titration is over then the pH of the solution will be:-{\text{K}_a} = 10^{-5}} (A) 5 + \text{log } 1/3, 5, 5 + \text{log } 3 (C) 5 - \text{log } 1/3, 5, 5 + \text{log } 3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (C) 5 - \text{log } 1/3, 5, 5 - \text{log } 3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3 (D) 5 - \text{log } 1/3, 4, 5 + \text{log } 1/3 (D) 5 - \text{log } 1/3 (D) 5 - \text{log } 1/3 (D) 5 - \text{log } 1/3 (D) 6 - \text{log } 1/3 (D) 7 - \text{log } 1/3 (D) 8 - \text{log } 1/3 (D) 1/3 (D) 8 - \text{log } 1/3 (D) 1/		(A) 3.6990 (B) 10.3010	(C) 3.85	(D) 4.3010		
(A) 0.4 (B) 0.05 (C) - 0.05 (D) 2.5 \[\begin{align*}{ c c c c c c c c c c c c c c c c c c c	Q.54	When 0.02 moles of NaOH are added to a l	itre of buffer solution	, its pH changes from 5.75 to		
(b) Solution (c) (c) (c) (d) Solution (c) (d) Solution (c) (e) (d) Solution (c) (e) (d) Solution (e) (e) (e) Solution (e) (e) Solution						
the pH of the solution will be :-{ $K_a = 10^{-5}$ } (A) $5 + \log 1/3$, 5 , $5 + \log 3$ (B) $5 + \log 3$, 4 , $5 + \log 1/3$ (C) $5 - \log 1/3$, 5 , $5 - \log 3$ (D) $5 - \log 1/3$, 4 , $5 + \log 1/3$ Q.56 When 20 ml of $\frac{M}{20}$ NaOH are added to 10 ml of $\frac{M}{10}$ HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid–base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In ⁻) forms of the indicator by the expression:- (A) $\log \frac{[H \ln]}{[\ln^{-}]} = pK_{in} - pH$ (B) $\log \frac{[H \ln]}{[\ln^{-}]} = pK_{in} - pH$ (C) $\log \frac{[In^{-}]}{[H \ln]} = pH + pK_{in}$ (D) $\log \frac{[In^{-}]}{[H \ln]} = pK_{in} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{bold} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		(A) 0.4 (B) 0.05	(C) - 0.05	(D) 2.5		
(A) 5 + log 1/3, 5, 5 + log 3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 Q.56 When 20 ml of $\frac{M}{20}$ NaOH are added to 10 ml of $\frac{M}{10}$ HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (Hln) and base (In) forms of the indicator by the expression:- (A) log $\frac{[Hln]}{[ln^-]} = pK_{ln} - pH$ (B) log $\frac{[Hln]}{[ln^-]} = pH - pK_{ln}$ (C) log $\frac{[In^-]}{[Hln]} = pH + pK_{ln}$ (D) log $\frac{[In^-]}{[Hln]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{neid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K_b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	Q.55	$\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ NaOH	. When 25%, 50% and	1 75% of titration is over then		
(A) 5 + log 1/3, 5, 5 + log 3 (C) 5 - log 1/3, 5, 5 - log 3 (D) 5 - log 1/3, 4, 5 + log 1/3 Q.56 When 20 ml of $\frac{M}{20}$ NaOH are added to 10 ml of $\frac{M}{10}$ HCl, the resulting solution will:- (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (Hln) and base (In) forms of the indicator by the expression:- (A) log $\frac{[Hln]}{[ln^-]} = pK_{ln} - pH$ (B) log $\frac{[Hln]}{[ln^-]} = pH - pK_{ln}$ (C) log $\frac{[In^-]}{[Hln]} = pH + pK_{ln}$ (D) log $\frac{[In^-]}{[Hln]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{neid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K_b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		the pH of the solution will be :- $[K_a = 10^{-5}]$	To the fit distribution of			
Q.56 When 20 ml of $\frac{M}{20}$ NaOH are added to 10 ml of $\frac{M}{10}$ HCl, the resulting solution will: (A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In') forms of the indicator by the expression: (A) log $\frac{[Hln]}{[ln^-]} = pK_{In} - pH$ (B) log $\frac{[Hln]}{[ln]} = pH - pK_{In}$ (C) log $\frac{[In]}{[Hln]} = pH + pK_{In}$ (D) log $\frac{[In]}{[Hln]} = pK_{In} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{aeid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K_b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.				- log 1/3		
(A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In) forms of the indicator by the expression: (A) log $\frac{[H \ln]}{[\ln^{-}]} = pK_{In} - pH$ (B) log $\frac{[H \ln]}{[\ln^{-}]} = pH - pK_{In}$ (C) log $\frac{[In^{-}]}{[H \ln]} = pH + pK_{In}$ (D) log $\frac{[In^{-}]}{[H \ln]} = pK_{In} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K_b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.			(D) $5 - \log 1/3, 4, 5$	+ log 1/3		
(A) Turn blue litmus red (B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus The rapid change of pH near the stoichiometric point of an acid-base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In) forms of the indicator by the expression: (A) log $\frac{[H \ln]}{[\ln^{-}]} = pK_{In} - pH$ (B) log $\frac{[H \ln]}{[\ln^{-}]} = pH - pK_{In}$ (C) log $\frac{[In^{-}]}{[H \ln]} = pH + pK_{In}$ (D) log $\frac{[In^{-}]}{[H \ln]} = pK_{In} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K_b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	Q.56	And the second section of the second				
(B) Turn phenolphthalein solution pink colour (C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid–base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In ⁻) forms of the indicator by the expression: (A) log $\frac{[Hln]}{[ln^-]} = pK_{ln} - pH$ (B) log $\frac{[Hln]}{[ln]} = pH - pK_{ln}$ (C) log $\frac{[In^-]}{[Hln]} = pH + pK_{ln}$ (D) log $\frac{[In^-]}{[Hln]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.						
(C) Turn methyl orange red (D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid—base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In) forms of the indicator by the expression: (A) log $\frac{[Hln]}{[In^-]} = pK_{ln} - pH$ (B) log $\frac{[Hln]}{[In^-]} = pH - pK_{ln}$ (C) log $\frac{[In^-]}{[Hln]} = pH + pK_{ln}$ (D) log $\frac{[In^-]}{[Hln]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K_b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.			our			
(D) Will have no effect on either red or blue litmus Q.57 The rapid change of pH near the stoichiometric point of an acid—base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In¹) forms of the indicator by the expression: (A) log \[\frac{[HIn]}{[In^-]} = pK_{In} - pH \] (B) log \[\frac{[HIn]}{[In^-]} = pH - pK_{In} \] (C) log \[\frac{[In^-]}{[HIn]} = pH + pK_{In} \] (D) log \[\frac{[In^-]}{[HIn]} = pK_{In} - pH \] Q.58 Calculate the pH range in which an acid indicator with K _{acid} (indicator) = 1.0 \times 10^{-5} \text{ changes colour when the concentration of the indicator is 1 \times 10^{-3} M. (A) 5 \times 1 \] (B) 11 \times 1 \] Q.59 In what pH range will a 1 \times 10^{-4} M solution of an indicator will K _b (indicator) = 1 \times 10^{-11} \text{ change colour?} (A) 7.0 \times 1 \] Q.60 An acid-base indicator has a K _a = 1.0 \times 10^{-5}. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.			to No No No No.			
 Q.57 The rapid change of pH near the stoichiometric point of an acid—base titration is the basis of indicator detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn) and base (In) forms of the indicator by the expression: (A) log		(D) Will have no effect on either red or blu	ue litmus	BUTTON TOWN		
detection. pH of the solution is related to ratio of the concentrations of the conjugate acid (Hill) and base (In) forms of the indicator by the expression: (A) $\log \frac{[Hln]}{[ln^-]} = pK_{ln} - pH$ (B) $\log \frac{[Hln]}{[ln^-]} = pH - pK_{ln}$ (C) $\log \frac{[In^-]}{[Hln]} = pH + pK_{ln}$ (D) $\log \frac{[In^-]}{[Hln]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0×10^{-5} changes colour when the concentration of the indicator is $1 \times 10^{-3}M$. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a $1 \times 10^{-4}M$ solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	Q.57	7 The rapid change of pH near the stoichiometric point of an acid–base titration is the basis of indicator detection, pH of the solution is related to ratio of the concentrations of the conjugate acid (HIn)				
(A) $\log \frac{[H \ln]}{[\ln^{-}]} = pK_{ln} - pH$ (B) $\log \frac{[H \ln]}{[\ln^{-}]} = pH - pK_{ln}$ (C) $\log \frac{[In^{-}]}{[H \ln]} = pH + pK_{ln}$ (D) $\log \frac{[In^{-}]}{[H \ln]} = pK_{ln} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0×10^{-5} changes colour when the concentration of the indicator is $1 \times 10^{-3}M$. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.						
(C) log $\frac{[In^{-}]}{[Hln]} = pH + pK_{In}$ (D) log $\frac{[In^{-}]}{[Hln]} = pK_{In} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0×10^{-5} changes colour when the concentration of the indicator is 1×10^{-3} M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		and base (In) forms of the indicator by the		pinoning to blom \$6.00		
(C) log $\frac{[In^{-}]}{[Hln]} = pH + pK_{In}$ (D) log $\frac{[In^{-}]}{[Hln]} = pK_{In} - pH$ Q.58 Calculate the pH range in which an acid indicator with K_{acid} (indicator) = 1.0×10^{-5} changes colour when the concentration of the indicator is 1×10^{-3} M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		(A) $\log \frac{[H \ln]}{m} = pK - pH$	(B) $\log \frac{[H \ln]}{[I n^{-}]} = pH$	– pK _{tn}		
Q.58 Calculate the pH range in which an acid indicator with K _{acid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K _b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a K _a = 1.0 × 10 ⁻⁵ . The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		(A) log [In-] Prin P	[III]	Hom Pull MSER (A)		
Q.58 Calculate the pH range in which an acid indicator with K _{acid} (indicator) = 1.0 × 10 ⁻⁵ changes colour when the concentration of the indicator is 1 × 10 ⁻³ M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1 × 10 ⁻⁴ M solution of an indicator will K _b (indicator) = 1 × 10 ⁻¹¹ change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a K _a = 1.0 × 10 ⁻⁵ . The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		$[\ln^{-}] = nU + nK$	(D) $\log \frac{[\ln^-]}{m} = pK$.	- pH		
colour when the concentration of the indicator is 1×10^{-3} M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.						
colour when the concentration of the indicator is 1×10^{-1} M. (A) 5 ± 1 (B) 11 ± 1 (C) 3 ± 1 (D) 8 ± 1 Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	Q.58	Calculate the pH range in which an acid in	indicator with K_{acid} (inc	dicator) = 1.0×10^{-5} changes		
Q.59 In what pH range will a 1×10^{-4} M solution of an indicator will K_b (indicator) = 1×10^{-11} change colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.			(C) 3 + 1	(D) + 1		
colour? (A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		(A) 5 ± 1 (B) 11 ± 1	of an indicator will K.	(indicator) = 1×10^{-11} change		
(A) 7.0 ± 1 (B) 3.0 ± 1 (C) 5.5 ± 1 (D) 11.0 ± 1 Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-5}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	Q.59	In what pH range will a 1 1 10 112 getting	b	AND AND ADMINISTRATION OF THE PARTY OF THE P		
Q.60 An acid-base indicator has a $K_a = 1.0 \times 10^{-3}$. The acid form of the indicator is red and the basic form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.		(A) 7.0 ± 1 (B) 3.0 ± 1	(C) 5.5 ± 1	(D) 11.0 ± 1		
form is blue. Calculate the pH change required to change the colour of the indicator from 80% red to 80% blue.	0.60	An acid-base indicator has a $K = 1.0 \times 10^{-1}$	5. The acid form of the	e indicator is red and the basic		
red to 80% blue.	Q.00	form is blue. Calculate the pH change requi	red to change the cold	our of the indicator from 80%		
$(D) \land (D) $		red to 80% blue.				
		$\langle D \rangle \wedge Q \rangle$	(C) 0.20	(D) 1.40		

Q.76	Solubility product of $Mg(OH)_2$ is 1×10^{-11} . At what pH, precipitation of $Mg(OH)_2$ will begin from				
	0.1 M Mg ²⁺ solution :-				
Q.77	(A) 9 (B) 5 (C) 3 (D) 7 What will happen if the pH of the solution of 0.001 M Mg(NO ₃) ₂ solution is adjusted to pH = 9 (K_{sp} of Mg(OH) ₂ = 8.9 × 10 ⁻¹²)				
	(A) ppt will take place (B) ppt will not take place				
diller.	(C) Solution will be saturated (D) None of these				
Q.78	Read the following:				
	(i) When a solution of a weak monoprotic acid is titrated against a strong base, at half-neutralization point, $pH = \frac{1}{2} pK_a$.				
	(ii) A buffer has maximum buffer capacity when the ratio of salt to acid is 10.				
	(iii) In a mixture of waek acid and its salt, the ratio of concentration of salt to acid is increased ten fold. The pH of the solution would Increase by one unit.				
	(iv) An aqueous solution of K ₂ SO ₄ has pH nearly equal to 7.				
	Select the correct code for above.				
	(A) TTTT (B) TFTT (C) FTFT (D) FFTT				
Q.79	Read the following:				
	(i) K_a for an acid HA is 1×10^{-6} . K_b for A^- would be 10^{-8}				
	(ii) The conjugate acid of sulphate (SO_4^{2-}) is HSO_4^{-} (iii) The value of K_w increases with increase in temperature.				
	(iv) Larger the value of pK _a weaker is the acid.				
	Select the correct code for above.				
	(A) TTTT (B) TFTT (C) FTFT (D) FTTT				
0.0	$A \rightarrow A A A A A A A A A A A A A A A A A A$				
5 (8	10 mm 10mm G Chzeor H-1 Chzeor No				
	180 IN 180				
	pu = play tos T				
	1 to try mn nm				
	THE MEDICAL PARTY OF THE PROPERTY OF THE PARTY OF THE PAR				
	pn= pen+ 1n 10-n)				
	Les Louis de la Company (La La La Barra CV Bland, Clark), Aconquita solocitus excellences excellences				
	the second green acids and west nitres undorse denotice to frozens				
	in the course of many of the course of the c				