

Using the standard electrode potential values given below, decide which of the statements, I, II, 8. III and IV are correct. Choose the right answer from (A), (B), (C) and (D).

Fe²⁺_(aq) + 2e⁻
$$\Longrightarrow$$
 Fe_(s); E° = -0.44 V
Cu²⁺_(aq) + 2e⁻ \Longrightarrow Cu_(s); E° = +0.34 V
Ag⁺_(aq) + e⁻ \Longrightarrow Ag_(s); E° = +0.80 V
I. Copper can displace iron from FeSO₄ solution.

II. Iron can displace copper from CuSO, solution. III. Silver can displace copper from CuSO₄ solution. IV. Iron can displace silver from AgNO, solution. (B) II and III (C) II and IV (D) I and IV (A) I and II The reduction potential values are given below: $Mg^{2+} / Mg = -2.34 \text{ volt}$ $Al^{3+}/Al = -1.67$ volt, $I_2 / 2I^- = + 0.53$ volt $Cu^{2+}/Cu = +0.34 \text{ volt},$ Which one is the best reducing agent? (D) I, (B) Mg (C) Cu (A) Al The following facts are available:-10. $2X + Y_2 \rightarrow 2Y + X_2$ $2W + Y_2 \rightarrow NO$ reaction $2Z + X_1 \rightarrow 2X + Z_2$ Which of the following statements is correct :-(A) $E^{\circ}_{W^{-}/W_{2}} > E^{\circ}_{Y^{-}/Y_{2}} > E^{\circ}_{X^{-}/X_{2}} > E^{\circ}_{Z^{-}/Z_{2}}$ (B) $E^{\circ}_{W^{-}/W_{2}} < E^{\circ}_{Y^{-}/Y_{2}} < E^{\circ}_{X^{-}/X_{2}} < E^{\circ}_{Z^{-}/Z_{2}}$ (C) $E^{\circ}_{W^{-}/W_{2}} < E^{\circ}_{Y^{-}/Y_{2}} > E^{\circ}_{X^{-}/X_{2}} > E^{\circ}_{Z^{-}/Z_{2}}$ (D) $E^{\circ}_{W^{-}/W_{2}} > E^{\circ}_{Y^{-}/Y_{2}} < E^{\circ}_{X^{-}/X_{2}} < E^{\circ}_{Z^{-}/Z_{2}}$ $E^{\circ}(Ni^{2+}/Ni) = -0.25 \text{ volt}, \quad E^{\circ}(Au^{3+}/Au) = 1.50 \text{ volt}.$ The standard emf of the voltaic cell. $Ni_{(s)} \mid Ni^{2+}_{(aq)} (1.0 \text{ M}) \parallel Au^{3+}_{(aq)} (1.0 \text{ M}) \mid Au_{(s)} \text{ is :}$ (D) 4.0 volt (B) -1.75 volt (C) 1.75 volt (A) 1.25 volt E° for $F_2 + 2e^- = 2F$ is 2.8 V, E° for $\frac{1}{2}F_2 + e^- = F$ is ? (D) -1.4 V(C) -2.8 V(B) 1.4 V (A) 2.8 V .. initiand, it's Red. From the following E° values of half cells, 13. (ii) $B^- + e \rightarrow B^{2-}$; $E^{\circ} = +1.25 \text{ V}$ (i) $A + e \rightarrow A^-$; $E^{\circ} = -0.24 \text{ V}$ (iii) $C^- + 2e \rightarrow C^{3-}$; $E^{\circ} = -1.25 \text{ V}$ (iv) $D + 2e \rightarrow D^{2-}$; $E^{\circ} = +0.68 \text{ V}$ What combination of two half cells would result in a cell with the largest potential? (B) (ii) and (iv) (C) (i) and (iii) (D) (i) and (iv) (A) (ii) and (iii) If Δ G° of the cell reaction, $AgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + H^+ + Cl^- \text{ is } -21.52 \text{ KJ then } \Delta G^\circ \text{ of } 2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2H^+$ +2Cl is: (D) 43.04 KJ (C) - 43.04 KJ(B) -10.76 KJ (A) -21.52 KJ The reduction potential of hydrogen electrode ($P_{H_2} = 1$ atms; $[H^+] = 0.1$ M) at 25°C will be -15. (D) 0.059 V (B) -0.059 V (C) 0.118 V (A) 0.00 V Which of the following represents the reduction potential of silver wire dipped into 0.1 M AgNO, 16. solution at 25° C? (B) $(E_{red}^{\circ} + 0.059)$ (C) $(E_{oxi}^{\circ} - 0.059)$ (D) $(E_{red}^{\circ} - 0.059)$ (A) E° Which of the following will increase the voltage of the cell with following cell reaction 17. $Sn_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Sn^{+2}_{(aq)} + 2Ag_{(s)}$ (A) Decrease in the concentration of Ag+ ions (At -) As . E= Ered - 0:059/09 1 (B) Increase in the concentration of Sn⁺² ions (C) Increase in the concentration of Ag+ ions (D) (A) & (B) both

18.	For a reaction - A(s) + $2B^+_{(aq)} \rightarrow A^{2+}_{(aq)} + 2B_{(s)}$ K _c has been found to be 10^{12} . The E°cell is:
	(A) 0.354 V (B) 0.708 V (C) 0.0098 V (D) 1.36 V
19.	At 25°C the standard emf of cell having reactions involving two electrons change is found to be
	0.295V. The equilibrium constant of the reaction is -
	(A) 29.5×10^{-2} (B) 10 (C) 10^{10} (D) 29.5×10^{10}
20.	For the cell reaction $2^{\circ} = 0.05^{\circ} 10^{\circ}$
	$Mg_{(s)} + Zn_{(aq)}^{2+}(1M) \longrightarrow Zn(s) + Mg_{(aq)}^{2+}(1M)$
	The emf has been found to be 1.60 V. E° of the cell is:
/	(A) -1.60 V (B) 1.60 V (C) 0.0 V (D) 0.16 V
21.	The emf of the cell in which the following reaction,
	$Zn(s) + Ni_{(aq)}^{2+} (a = 0.1) \rightarrow Zn_{(aq)}^{2+} (a = 1.0) + Ni(s)$
	occurs, is found to be 0.5105 V at 298 K. The standard e.m.f. of the cell is :-
,	(A) -0.5105 V (B) 0.5400 V (C) 0.4810 V (D) 0.5696 V
22.	The standard emf for the cell reaction,
	$Zn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$ is 1.10 volt at 25 °C. The emf for the cell reaction when
	0.1 M Cu ²⁺ and 0.1 M Zn ²⁺ solution are used at 25°C is:
	(A) 1.10 volt (B) 0.110 volt (C) -1.10 volt (D) -0.110 volt
23.	What is the potential of the cell containing two hydrogen electrodes as represented below
	Pt $H_2(g)$ $H_{(aq)}^{+}(10^{-8} \text{ M})$ $H_{(aq)}^{+}(0.001 \text{ M})$ $H_2(g)$ Pt
	(A) -0.295 V (B) -0.0591 V (C) 0.295 V (D) 0.0591 V
24.	Consider the cell, Cu Cu ⁺² Ag ⁺ Ag. If the concentration of Cu ⁺² and Ag ⁺ ions becomes ten times
-	the emf of the cell:-
	(A) Becomes 10 times (B) Remains same
	(C) Increase by 0.0295 V (D) Decrease by 0.0295 V
25.	Determine the value of E° cell for the following reaction -
	$Cu^{+2}_{(aq)} + Sn^{+2}_{(aq)} \longrightarrow Cu_{(s)} + Sn^{+4}_{(aq)}$ Equilibrium constant is 10 ⁶
	(A) 0.177 (B) 0.0177 (C) 0.215 (D) 1.77
26.	The standard emf of a galvanic cell involving cell reaction with $n = 4$ is found to be 0.295 V at
	25°C. The equilibrium constant of the reaction would be,
	(A) 1.0×10^{20} (B) 2.0×10^{11} (C) 4.0×10^{12} (D) 1.0×10^{2}
27.	Given electrode potentials:
	$Fe^{3+}_{(aq)} + e^{-} \longrightarrow Fe^{2+}_{(aq)}$; $E^{\circ} = 0.771 \text{ volts}$ $I_{2(g)} + 2e^{-} \longrightarrow 2I_{(aq)}$; $E^{\circ} = 0.536 \text{ volts}$
	E° , for the cell reaction,
	$2Fe^{3+}$ + $2I_{(aq)} \longrightarrow 2Fe^{2+}$ + $I_{2(g)}$ 1S -
	(A) $(2 \times 0.771 - 0.536) = 1.006$ volts (B) $(0.771 - 0.5 \times 0.536) = 0.503$ volts
	(C) $0.771 - 0.536 = 0.235$ volts (D) $0.536 - 0.771 = -0.235$ volts
28.	The equilibrium constant for the reaction
20.	$Sr(s) + Mg^{+2}$ (aq) $\rightleftharpoons Sr^{+2}$ (aq) + Mg(s) is 4×10^{12} at 25°C
	The E° for a cell made up of the Sr/Sr ⁺² and Mg ⁺² /Mg half cells
	$(\log 2 = 0.3)$ (B) 0.7434 V (C) 0.1858 V (D) 0.135 V
	(A) 0.3717 V (B) 0.7434 V (C) 0.1858 V (D) 0.135 V

at

29.	By how much times will potential of h	half cell Cu ⁻² /Cu change if, the solution is diluted to			
	(A) Increases by 59 mV	(B) Decrease by 59 mV			
	(C) Increases by 29.5 mV	(D) Decreases by 29.5 mV			
		OLYTIC CELL			
30.		cell containing an electrolyte, positive ions move towards			
	the cathode and negative ions towards the the solution?	anode. What will happen if the cathode is pulled out of			
	(A) The positive ions will start moving towards the anode and negative ions will stop moving.				
	(B) The negative ions will continue to move towards the anode and the positive ions will stop moving				
	(C) Both positive and negative ions will move towards the anode.				
	(D) None of these movements will take p				
31.	Which of the substances Na, Hg, S, Pt and graphite can be used as electrodes in electrolytic cells having aqueous solution?				
	(A) Hg and Pt	(B) Hg, Pt and graphite			
	(C) Na. S	(D) Na, Hg, S			
32.	The products formed when an aqueous solut are:	tion of NaBr is electrolyzed in a cell having inert electrodes			
	(A) Na and Br ₂ (B) Na and O ₂	(C) H ₂ , Br ₂ and NaOH(D) H ₂ and O ₂			
22	The second of th	demosited til the flore cell, the military of chrom			
33.	Electrolysis of a CuSO ₄ produces:	(B) A decrease in pH			
	(A) An increase in pH(C) Either decrease or increase	(D) None			
24	A solution of sodium sulphate in water is	electrolysed using inert electrodes. The products at the			
34.	cathode and anode are respectively.				
	(A) H_2 , O_2 (B) O_2 , H_2	$(C) O_2$, Na (D) none			
35.	When an aqueous solution of lithium chloride is electrolysed using graphite electrodes (A) Cl ₂ is liberated at the anode.				
	(B) Li is deposited at the cathode				
	(C) as the current flows, pH of the solution	remains constant			
	(D) as the current flows, pH of the solution decreases.				
36.	The amount of an ion discharged during	electrolysis is not directly proportional to:			
	(A) resistance	(B) time			
	(C) current strength	(D) electrochemical equivalent of the element			
37.	Number of electrons involved in the elect	rodeposition of 63.5 g of Cu from a solution of CuSO ₄			
	is: $(N_A = 6 \times 10^{23})$				
	(A) 6×10^{23} (B) 3×10^{23}	(C) 12×10^{23} (D) 6×10^{22}			
38.		ed through an electrolytic solution the mass deposited on			
	the electrode is equal to:				
	(A) equivalent weight	(B) molecular weight			
	(C) electrochemical equivalent	(D) one gram			

39.	Electro chemical equivalent of a substance is 0.0006; its e wt. is:					
	(A) 57.9 (B) 28.95 (C) 115.8 (D) car	mot be calculated				
40.		of 2 ampere is passed				
	for 2 hours. If one ampere of electric current is passed for 4 hours in the san	ne voltameter, copper				
	doposited will be:					
	(A) W (B) W/2 (C) W/4 (D) 2W					
41.	(b) 11/2					
	eir:					
	the amounts of elements deposited on the electrodes are in the ratio of th (A) atomic number (B) atomic masses (C) specific gravities (D) equ	ivalent masses				
42.	The amount of electricity that can deposit 108 g. of silver from silver nitro	rate solution is:				
	(A) 1 ampere (B) 1 coulomb (C) 1 Faraday (D) 2 a	mpere				
43.		amount of electricity				
	from aqueous H ₂ SO ₄ and fused MgSO ₄ are:					
	(A) 1:8 (B) 1:12 (C) 1:16 (D) No	ne of these				
44.		The equivalent wt. of				
	the metal is:	6.40				
	(A) 10 (B) 30 (C) 50 (D) 96	.5				
45.						
	of nickel nitrate $[Ni(NO_3)_2]$ and chromium nitrate $[Cr(NO_3)_3]$ respectively.	If 0.3 g of nickel was				
	deposited in the first cell, the amount of chromium deposited is:					
	(at. wt. of Ni = 59, at. wt. of $Cr = 52$)					
	(A) 0.1 g (B) 0.17 g (C) 0.3 g (D) 0.0	5 g				
46.		is:				
	(A) one ampere per second (B) 96500 coulomb per second					
	(C) one ampere for one hour (D) charge on one mole of e	electrons				
47.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The equivalent weight				
	of the substance is:					
	(A) 3.17 (B) 0.317 (C) 317 (D) 31	.7				
48.	8. A current of 9.65 amp. passing for 16 min. 40 sec. through a molten tin s	salt deposits 5.95 g. of				
	tin The oxidation state of the tin in the salt is: (at. wt of Sn = 119)					
	(A) +4 $(B) +3$ $(C) +2$ $(D) +$					
49.	9. The time required for a current of 3 amp. to decompose electrolytically	18 g of H,O is:				
	(A) 18 hour (B) 36 hour (C) 9 hour (D) 18	3 seconds				
50.	0. 1 mole of Al is deposited by X coulomb of electricity passing through alun	ninium nitrate solution.				
	The number of moles of silver deposited by X coulomb of electricity from	n silver nitrate solution				
	is:					
	(A) 3 (B) 4 (C) 2 (D) 1					
51.	to the element when it absorbs 6×10^{20} electrons. The	mber of gm equivalents				
	of the ion is:	Towns of the State				
	(A) 0.10 (B) 0.01 (C) 0.001 (D) 0	.0001				

52.	When an electric current is passed through acid diluted water, 112 ml. of hydrogen gas at STP collects				
	at the cathode in 965 second. The current passed, in ampere is:				
	(A) 1.0 (B) 0.5 (C) 0.1 (D) 2.0				
53.	How many coulombs of electric charge are required for the oxidation of 1 mole of H ₂ O to O ₂ ?				
	(A) 9.65×10^4 C (B) 4.825×10^5 C (C) 1.93×10^5 C (D) 1.93×10^4 C				
54.	A factory produces 40 kg. of calcium in two hours by electrolysis. How much aluminium can				
	be produced by the same current in two hours :-				
	(At wt. of $Ca = 40$, $Al = 27$)				
	(A) 22 kg. (B) 18 kg. (C) 9 kg. (D) 27 kg.				
55.	The cost of electricity required to deposit 1 g of Mg is Rs. 5.00. How much would it cost to deposit				
	9 g of Al (At wt. Al = 27 , Mg = 24)				
	(A) Rs. 10 (B) Rs. 27 (C) Rs. 40 (D) Rs. 60				
56.	Calculate the volume of hydrogen at STP obtained by passing a current of 0.536 ampere through				
	acidified water for 30 minutes.				
	(A) 0.112 litre (B) 0.224 litre (C) 0.056 litre (D) 0.448 litre				
57.	An electric current is passed through silver voltameter connected to a water voltameter in series. The				
31.	cathode of the silver voltameter weighed 0.108g more at the end of the electrolysis. The volume of				
	oxygen evolved at STP is:				
	(A) 56cm^3 (B) 550 cm^3 (C) 5.6 cm^3 (D) 11.2 cm^3				
58.	4.5g of aluminium (at. mass 27 amu) is deposited at cathode from Al ³⁺ solution by a certain quantity				
	of electric charge. The volume of hydrogen produced at STP from H+ ions in solution by the same				
	quantity of electric charge will be –				
	(A) 44.8L (B) 11.2L (C) 22.4L (D) 5.6 L (B) 11.2L (C) 22.4L (D) 5.6 L				
59.	The time required to coat ameter surface of 80 cm ² with 5×10^{-3} cm thick layer of silver (density 1.08 g cm ⁻³) with the passage of 9.65A current through a silver nitrate solution is :				
	(A) 10 sec. (B) 40 sec. (C) 30 sec. (D) 20 sec.				
CO	One gm metal M^{+2} was discharged by the passage of 1.2×10^{22} electrons. What is the atomic				
60.	weight of metal?				
	(A) 25 (B) 50 (C) 100 (D) 75				
61.	One mole of electron passes through each of the solution of AgNO ₃ , CuSO ₄ and AlCl ₃ when Ag,				
	Cu and Al are deposited at cathode. The molar ratio of Ag, Cu and Al deposited are				
	(A) 1:1:1 (B) 6:3:2 (C) 6:3:1 (D) 1:3:6				
52.	The density of A is 10 g cm^{-3} . The quantity of electricity needed to plate an area $10 \text{ cm} \times 10 \text{ cm}$ to				
	a thickness of 10^{-2} cm using ASO ₄ solution would be (Atomic mass of A = 193)				
	(A) 5000 C (B) 10000 C (C) 40000 C (D) 20000 C				
53.	During electrolysis of an aqueous solution of sodium sulphate, 2.4 L of oxygen at STP was liber-				
	ated at anode. The volume of hydrogen at STP, liberated at cathode would be				
	(A) 1.2 L (B) 2.4 L (C) 2.6 L (D) 4.8 L				
64.	The charge required for the oxidation of one mole Mn ₃ O ₄ into MnO ₄ ²⁻ in presence of alkaline me-				
	dium is				
	(A) $5 \times 96500 \text{ C}$ (B) 96500 C (C) $10 \times 96500 \text{ C}$ (D) $2 \times 96500 \text{ C}$				

77.	Equivalent conductance of 0.1 M HA(weak acid) solution is 10 Scm ² equivalent ⁻¹ and that at infinite dilution is 200 Scm ² equivalent ⁻¹ Hence pH of HA solution is					
	(A) 1.3	(B) 1.7	(C) 2.3	(D) 3.7		
	16			6.1	di alban	ic

- If x is specific resistance of the electrolyte solution and y is the molarity of the solution, then $_{n}$ is 78. given by
- (B) $1000 \frac{y}{x}$ (C) $\frac{1000}{xy}$
- (D) $\frac{xy}{1000}$
- The dissociation constant of n-butyric acid is 1.6×10^{-5} and the molar conductivity at infinite 79. dilution is $380 \times 10^{-4} \, \mathrm{Sm^2 mol^{-1}}$. The specific conductance of the 0.01 M acid solution is
 - (A) 1.52×10^{-5} Sm⁻¹

(B) $1.52 \times 10^{-2} \text{ Sm}^{-1}$

(C) $1.52 \times 10^{-3} \text{ Sm}^{-1}$

(D) None