SELECT ONLY ONE IS CORRECT OPTIONS:

General Properties of d-block

1.	$N_2(g) + 3H_2(g) \stackrel{\text{Fe + Mo}}{\rightleftharpoons} 2NH_3(g)$; Haber's process, Mo is used as				
	(A) a catalyst	(B) a catalytic promoter			
	(C) an oxidising agent	(D) as a catalytic poison			
2.	An ornamental of gold having 75% of gold, i	t is of carat.			
	(A) 18 (B) 16	(C) 24 (D) 20			
3.	Transition elements having more tendency to p-block elements) due to -	form complex than representative elements (s and			
	(A) availability of d-orbitals for bonding				
(B) variable oxidation states are not shown by transition elements					
	(C) all electrons are paired in d-orbitals	CDC CTUDY			
		SBG STUDY			
4.	A compound of mercury used in cosmetics, in Ay is -	rurvedic and Yunani medicines and known as Vermilion			
	(A) HgCl ₂ (B) HgS	(C) Hg_2Cl_2 (D) HgI			
5.	Transition elements are usually characterised by property because of	by variable oxidation states but Zn does not show this			
	(A) completion of np-orbitals	(B) completion of (n-1)d orbitals			
	(C) completion of ns-orbitals	(D) inert pair effect			
6.	The d-block element which is a liquid at room than hydrogen and its chloride (MX ₂) is volate	temperature, having high specific heat, less reactivity ile on heating is			
	(A) Cu (B) Hg	(C) Ce (D) Pm			
7.	Coinage metals show the properties of	A Lamento			
	(A) typical elements	(B) normal elements			
	(C) inner-transition elements	(D) transition element			
8.	The transition metal used in X-rays tube is				
	(A) Mo (B) Ta	(C) Tc (D) Pm			

9.	The higher oxidation	states of transition ele	ments are found to b	e in the combination with A and	
	B, which are		nan roomanaa	(D) F, Cl	
1	(A) F, O	(B) O, N	(C) O, Cl		
300	The metals present i				
	(A) Zn, Hg	(B) Zh, Fe	(C) Co, Fe	(D) Mg, Fe	
11/	A metal M which is of alkalies like NaOI is	not affected by strong a H, KOH forms MCl ₃ wh	cids like conc. HNO	$_{3}$, conc. $H_{2}SO_{4}$ and conc. solution ing in photography. The metal M	
			1	(D) C::	
12	(A) Ag	(B) Hg	(C) Au	(D) Cu	
12.		used for making railwa	y tracks because		
		nigh percentage of Mn			
	(B) it is soft with h	igh percentage of Mn			
	(C) it is hard with small concentration of manganese with impurities				
(D) it is soft with small concentration of manganese with impuritie				rrities	
13.	Transition elements	in lower oxidation star	tes act as Lewis acid	because	
	(A) they form comp	plexes	(B) they are oxid	dising agents	
	(C) they donate elec	ctrons	(D) they do not	show catalytic properties	
14.	14. The electrons which take part in order to exhibit variable oxidation states by trans				
	(A) ns only		(B) (n-1)d only		
	(C) ns and (n-1)d o	only but not np	(D) (n-1)d and r	np only but not ns	
15.	Solution of MnO ₄	is purple-coloured due		(A) completion of up orbital	
	(A) d-d-transition				
	(B) charge transfer	from O to Mn			
	(C) due to both d-d	C) due to both d-d-transition and charge transfer			
	(D) none of these				
16.		ransition series shows	two oxidation states	x and y, differ by two units the	
10.		oxidation state x are io		x and y, differ by two units the	
		oxidation state x are io			
		oxidation state y are co			
	(D) compounds in	oxidation state y are co	ovalent if $y < x$		

Compounds of d-block

 $\xrightarrow{\text{compd }(U) + \text{conc.H}_2SO_4} (V)_{\text{Red gas}} \xrightarrow{\text{NaOH} + \text{AgNO}_3} (W)_{\text{Red ppt.}} \xrightarrow{\text{NH}_3 \text{ so ln.}} (X)$ 17.

imparts violet

colour in the

flame test

$$(W)_{Red ppt.} \xrightarrow{dil. HCl} (Y)_{white ppt.}$$

(U)
$$\xrightarrow{\text{NaOH}}$$
 (Z)_{gas} (gives white fumes with HCl)

sublimes on

heating

Identify (T) to (Z).

(A) $T = KMnO_4$, U = HCl, $V = Cl_2$, $W = HgI_2$, $X = Hg(NH_2)NO_3$, $Y = Hg_2Cl_2$, $Z = N_2$

$$\text{BYT}=\text{K}_2\text{Cr}_2\text{O}_7$$
, $\text{U}=\text{NH}_4\text{Cl}$, $\text{V}=\text{Cr}\text{O}_2\text{Cl}_2$, $\text{W}=\text{Ag}_2\text{Cr}\text{O}_4$, $\text{X}=[\text{Ag}(\text{NH}_3)_2]^+$, $\text{Y}=\text{Ag}\text{Cl}$, $\text{Z}=\text{NH}_3$

(C)
$$T = K_2CrO_4$$
, $U = KCl$, $V = CrO_2Cl_2$, $W = HgI_2$, $X = Na_2CrO_4$, $Y = BaCO_3$, $Z = NH_4Cl$

(D)
$$T = K_2MnO_4$$
, $U = NaCl$, $V = CrO_3$, $W = AgNO_2$, $X = (NH_4)_2CrO_4$, $Y = CaCO_3$, $Z = SO_2$

The number of moles of acidified KMnO₄ required to convert one mole of sulphite ion into sulphate ion is

(A) 2/5

(B) 3/5

(C) 4/5

(D) 1

19 $Cr_2O_7^2 - \frac{X}{V} \rightarrow 2CrO_4^2$, X and Y are respectively

(A)
$$X = OH^-, Y = H^+$$

(B) $X = H^+, Y = OH^-$

(C)
$$X = OH^-, Y = H_2O_2$$

(D) $X = H_2O_2$, $Y = OH^-$

CrO3 dissolves in aqueous NaOH to give

(A) Cr2O22-

(B) CrO, 2-

(C) Cr(OH)₃

(D) Cr(OH),

21. During estimation of oxalic acid Vs KMnO₄, self indicator is

(A) KMnO,

(B) oxalic acid

(C) K2SO4

(D) MnSO₄

Org.solvent X + Y, X and Y are Acidified chromic acid + H2O2 -

(blue colour)

(A) CrO_5 and H_2O (B) Cr_2O_3 and H_2O (C) CrO_2 and H_2O

(D) CrO and H2O

32.	To an acidified dichromate solution, a pinch	d shaken. What is observed:				
	(A) blue colour	(B) Orange colour changing to green				
	(C) Copious evolution of oxygen	(D) Bluish - green pro	(D) Bluish - green precipitate			
33.	The rusting of iron is formulated as Fe ₂ O ₃ ·x	The rusting of iron is formulated as Fe ₂ O ₃ ·xH ₂ O which involves the formation of				
	(A) $\operatorname{Fe_2O_3}$ (B) $\operatorname{Fe(OH)_3}$	(C) Fe(OH) ₂	(D) $\operatorname{Fe_2O_3} + \operatorname{Fe(OH)_3}$			
34.	Solid CuSO ₄ ·5H ₂ O having covalent, ionic as well as co-ordinate bonds. Copper atom/ion forms					
	(A) 1 (B) 2	(C) 3	(D) 4			
35.	$KMnO_4 + HCl \longrightarrow H_2O + X(g)$, X is a (acidified)					
	(A) red liquid	(B) violet gas				
	(C) greenish yellow gas	(D) yellow-brown gas				
36.	Purple of cassius is:					
	(A) Pure gold	(B) Colliodal solution	of gold			
	(C) Gold (I) hydroxide • (D) Gold (III) chloride					
37.	Amongst the following species, maximum co	valent character is exhib	ited by			
	(A) FeCl ₂ (B) ZnCl ₂	(C) HgCl ₂	(D) CdCl ₂			
38.	Number of moles of SnCl ₂ required for the reducti	Number of moles of SnCl ₂ required for the reduction of 1 mole of K ₂ Cr ₂ O ₇ into Cr ₂ O ₃ is (in acidic medium)				
	(A) 3 (B) 2	(C) 1	(D) 1/3			
39.	Pick out the incorrect statement:					
	(A) MnO ₄ ²⁻ is quite strongly oxidizing and stable only in very strong alkalies. In dilute alkali, neutral					
	solutions, it disproportionates.					
	(R) In acidic solutions MnO is reduced to Mn2t and the TTA of					
	(B) In acidic solutions, MnO ₄ ⁻ is reduced to Mn ²⁺ and thus, KMnO ₄ is widely used as oxidising agent					
	(C) KMnO ₄ does not acts as oxidising agent in alkaline medium					
	D) KMnO ₄ is manufactured by the fusion of pyrolusite ore with KOH in presence of air or KNO ₃ ollowed by electrolytic oxidation in strongly alkaline solution.					
10.	The aqueous solution of CuCrO ₄ is green bed	cause it contains				
	(A) green Cu ²⁺ ions	(B) green CrO ₄ ²⁻ ions	3			
	(C) blue Cu ²⁺ ions and green CrO ₄ ²⁻ ions	(D) blue Cu ²⁺ ions ar	nd vellow CrO 2-:			
	In nitroprusside ion, the iron exists as Fe ²⁺ and NO as NO ⁺ rather than Fe ³⁺ and NO respectively.					
	(A) magnetic moment in solid state	(B) thermal decompos	sition mathe 1			
	(C) by reaction with KCN	(D) by action with K	SO.			

42	Which of the following	reaction is possible at	anode?		
	(A) 2Cr ³⁺ + 7H ₂ O	• Cr ₂ O ₇ ²⁻ + 14 H ⁺	(B) $F_2 \longrightarrow 2 F^-$		
	(C) $\frac{1}{2}$ O ₂ + 2H ⁺ \longrightarrow I	H ₂ O	(D) None of these	Then lo gotton self. J.	
43.	Colourless solutions of and a strip of copper is	the following four sals dipped in each one o	ts are placed separately f these. Which solution	in four different test tubes will turn blue?	
	441 ****	(B) AgNO ₃		(D) ZnSO ₄	
44.	When acidified KMnO ₄ is added to hot oxalic acid solution, the decolourization is slow in the beginning, but becomes very rapid after some time. This is because:				
	(A) Mn ²⁺ acts as auto-	catalyst	(B) CO ₂ is formed as	the product	
	(C) Reaction is exother		(D) MnO ₄ catalyses the	ne reaction	
45. Metre scales are made-up of alloy (A) invar Ni 367. (B) stainless steel ug-95%. (C) elektron Ni 2-4%. (C) elektron Ni 2-4%. (C) elektron The Ziegler-Natta catalyst used for polymerinstion of others and styrens in TiCle.					
7	(A) invar Ni 36%,	(B) stainless steeling-9	(C) elektron	(D) magnalium	
46.	The Ziegler-Natta catalyst used for polymerisation of ethene and styrene is $TiCl_4 + (C_2H_5)_3Al$, the catalysing species (active species) involved in the polymerisation is				
	(A) TiCl ₄	(B) TiCl ₃	(C) TiCl ₂	(D) TiCl	
47.	'Bordeaux mixture' is used as a fungicide. It is a mixture of				
390	$(A) CaSO_4 + Cu(OH)_2$		(B) $CuSO_4 + Ca(OH)_2$		
	(C) CuSO ₄ + CaO		(D) CuO + CaO	ton post server they are	
48.	Peacock ore is:			Tealepse Nonle (A)	
ace	(A) FeS ₂	(B) CuFeS ₂	(C) CuCO ₃ .Cu(OH) ₂	(D) Cu ₅ FeS ₄	